DOI QR코드

DOI QR Code

Neutronic design of pulsed neutron facility (PNF) for PGNAA studies of biological samples

  • Oh, Kyuhak (Department of Nuclear, Plasma Radiological Engineering, University of Illinois)
  • Received : 2020.11.02
  • Accepted : 2021.07.16
  • Published : 2022.01.25

Abstract

This paper introduces a novel concept of the pulsed neutron facility (PNF) for maximizing the production of the thermal neutrons and its application to medical use based on prompt gamma neutron activation analysis (PGNAA) using Monte Carlo simulations. The PNF consists of a compact D-T neutron generator, a graphite pile, and a detection system using Cadmium telluride (CdTe) detector arrays. The configuration of fuel pins in the graphite monolith and the design and materials for the moderating layer were studied to optimize the thermal neutron yields. Biological samples - normal and cancerous breast tissues - including chlorine, a trace element, were used to investigate the sensitivity of the characteristic γ-rays by neutron-trace material interactions and the detector responses of multiple particles. Around 90 % of neutrons emitted from a deuterium-tritium (D-T) neutron generator thermalized as they passed through the graphite stockpile. The thermal neutrons captured the chlorines in the samples, then the characteristic γ-rays with specific energy levels of 6.12, 7.80 and 8.58 MeV were emitted. Since the concentration of chlorine in the cancerous tissue is twice that in the normal tissue, the count ratio of the characteristic g-rays of the cancerous tissue over the normal tissue is approximately 2.

Keywords

References

  1. K. Knapp, Replacement of neutron sources used in well logging by neutron generators, in: 8th PNN & Well Logging Concefence, Eisenstadt, Austria, 2013. Sep. 26 - 27.
  2. J. Reijonen, Compact neutron generators for medical, homeland security and planetary exploration, in: Proc. Particle Accelerator Conference '05, Knoxville TN, USA, 2005. May 16 - 20.
  3. R.L. Holm, The uiuc advanced triga and the power reactor community, Trans. Am. Nucl. Soc. 69 (1993) 175-176.
  4. M. Strobl, I. Manke, N. Kardjilov, A. Hilger, M. Dawson, J. Banhart, Advances in neutron radiography and tomography, J. Phys. D Appl. Phys. 42 (24) (2009).
  5. J.R. Lamarsh, A.J. Baratta, Introduction to Nuclear Engineering, Prentice Hall, Upper Saddle River, NJ, 2001.
  6. M. Litz, C. Waits, J. Mullins, Neutron-activated gamma-emission: technology review," Army research Laboratory, Adelphi, MD, Tech. Rep. AFFDL-TR 5871 (2012).
  7. D.B. Pelowitz, Mcnpx user's manual, version 2.7.0, Los Alamos National Laboratory, Los Alamos, 2011. NM, Tech. Rep. LA-CP-11-00438.
  8. B. Ludewigt, Neutron Generators for Spent Fuel Assay, Lawrence Berkeley National Laboratory, Berkeley, CA, 2011. Tech. Rep.
  9. L. Cai, L.J. Meng, Hybrid pixel-waveform CdTe/CZT detector for use in an ultrahigh resolution MRI compatible spect system, Nucl. Instrum. Methods Phys. Res. 702 (2013).
  10. T. Aoki, H. Morii, T. Nakashima, Y. Takahashi, G. Ohashi, Y. Tomita, Y. Neo, H. Mimura, X-ray, gamma-ray detector/imager by CdTe semiconductor and its applications - art. no. 70080R, in: 8th International Conference on Correlation Optics vol. 7008, 2008, p. R80.
  11. V.A. Gnatyuk, T. Aoki, Y. Hatanaka, Laser-induced shock wave stimulated doping of CdTe crystals, Appl. Phys. Lett. 88 (24) (2006).
  12. T. Gandhi, Synthesis and Characterization of CZT Nanowires and its Potential as a Gamma Ray Detector, Ph.D. dissertation, University of Nevada, Reno, NV, 2008.
  13. K. Zanio, Cadmium telluride, in: Semiconductors and Semimetals, Academic Press Inc., New York, NY, 1978.
  14. A. Haghighat, Monte Carlo Methods for Particle Transport, CRC Press, Boca Raton, FL, 2014.
  15. D.S. McGregor, J.T. Lindsay, R.W. Olsen, Thermal neutron detection with cadmium(1-x) zinc(x) telluride semiconductor detectors, Nucl. Instrum. Methods A 381 (2-3) (1996) 498-501. https://doi.org/10.1016/S0168-9002(96)00580-3
  16. A.G. Vradii, M.I. Krapivin, L.V. Maslova, O.A. Matveev, A.K. Khusainov, V.K. Shashurin, Possibilities of Recording thermal-neutrons with cadmium telluride detectors, Sov. Atom. Energy 42 (1) (1977) 64-66. https://doi.org/10.1007/BF01119710
  17. A. Miyake, T. Nishioka, S. Singh, H. Morii, Y. Neo, H. Mimura, T. Aoki, Neutron detection with Gd/CdTe semiconductor detector, in: Hard X-Ray, Gamma-Ray, and Neutron Detector Physics Xii, vol. 7805, 2010.
  18. X5 Monte Carlo Team, MCNP-A General Monte Carlo N-Particle Transport Code, Version 5: Overview and Theory, Los Alamos National Laboratory, Los Alamos, NM, 2003. Tech. Rep. LA-UR-03-1987.
  19. GATE Collaboration Team, Gate user guide version 7.1 [Online]. Available: http://www.opengatecollaboration.org/sites/opengatecollaboration.org/_les/GATE-UsersGuideV7.1.pdf.
  20. R.L. Murray, Nuclear Energy: an Introduction to the Concepts, Systems, and Applications of Nuclear Processes, sixth ed., Butterworth-Heinemann, Burlington, 2009.
  21. W.B.H. Cooke, Predicted Behavior of the AGN 201 Reactor at High Power Levels, Naval Postgraduate School, Monterey, CA, 1961.
  22. M. Mattes, E. Sartori, Jef-1 scattering law data 41, NEA, Paris, France, 1984. Tech. Rep. JEF/DOC, 2.
  23. J.K. Shultis, R.E. Faw, Fundamentals of Nuclear Science and Engineering, CRC Press, New York, 2002. Marcel Dekker.
  24. A.H. Beddoe, S.J. Streat, G.L. Hill, Measurement of total body chlorine by prompt gamma in vivo neutron activation analysis, Phys. Med. Biol. 32 (2) (1987) 191-201. https://doi.org/10.1088/0031-9155/32/2/003
  25. R.J. Shypailo, K.J. Ellis, In vivo total body chlorine measurements using prompt-gamma neutron activation analysis, J. Rad. Anal. Nuc. Chem. 236 (1998) 19-23. https://doi.org/10.1007/BF02386311
  26. K.H. Ng, D.A. Bradley, L.M. Looi, Elevated trace element concentrations in malignant breast tissues, Br. J. Radiol. 70 (1997) 375-382. https://doi.org/10.1259/bjr.70.832.9166074
  27. IAEA, Prompt gamma-ray neutron activation analysis [Online]. Available: https://www-nds.iaea.org/pgaa/pgaa7/index.html.
  28. B.B. Kinsey, G.A. Bartholomew, W.H. Walker, Neutron capture γ-rays from phosphorus, sulfur, chlorine, potassium, and calcium, Phys. Rev. 85 (1952) 1012-1023 [Online]. Available: http://link.aps.org/doi/10.1103/PhysRev.85.1012.
  29. A. Perez-Andujar, L. Pibida, Performance of CdTe, HPGe and NaI(Tl) detectors for radioactivity measurements, Appl. Radiat. Isot. 60 (1) (2004) 41. https://doi.org/10.1016/j.apradiso.2003.10.006