DOI QR코드

DOI QR Code

On the use of time-dependent success criteria within risk-informed analyses. Application to LONF-ATWS sequences in PWR reactors

  • 투고 : 2021.09.01
  • 심사 : 2022.08.17
  • 발행 : 2022.12.25

초록

The classical Probabilistic Safety Analysis (PSA) does not include any time dependence explicitly. However, the success criteria (SC) could evolve during the cycle for some initiating events. In that sense, there is a type of sequence in which this time-dependency is quite important, the family of Anticipated Transient without Scram (ATWS) sequences in Pressurized Water Reactors. Therefore, a new risk-informed approach is proposed in this paper, which makes it possible to obtain the time-dependent SC evolution of the safety functions affected by the Moderator Temperature Coefficient (MTC) value. Then, the evolution of the ATWS conditional core damage probability (CCDP) could be obtained using a PSA model. To quantify the CCDP, the average values of the time-dependent failure probabilities must be computed. Finally, the comparison between the CCDP obtained through the application of the classical PSA approach and the new one makes it possible to quantify the impact of time-dependence on the SC of the headers that this new risk-informed ATWS approach can provide.

키워드

과제정보

Project PID2019-108755RB-I00 funded by MCIN/AEI /10.13039/501100011033.

참고문헌

  1. U.S., Nuclear Regulatory Commission, Regulatory Effectiveness of the Anticipated Transient without Scram Rule, 2003. NUREG-1780.
  2. American Society Of Mechanical Engineers, ASME Boiler and Pressure Vessel Code. An International Code. Section III: Rules for Construction of Nuclear Facility Components, 2017.
  3. E. Melendez, M. Sanchez-perea, C. Queral, J. Herrero-otero, Standardized probabilistic safety assessment models : applications of SPAR- CSN project (EM255), in: Probabilistic Saf. Assess. Manag., Honolulu, Hawaii, 2022.
  4. S. Eide, T.E. Wierman, C.D. Gentillon, C.L. Atwood, Industry-average performance for components and initiating events at U.S. Commercial nuclear power plants, NUREG/CR-6928 (2007).
  5. TRACE V5.840 USER'S MANUAL Volume 1: Input Specifications, 2014.
  6. C. Queral, A. Exposito, G. Jimenez, L. Valle, J. Carlos Martinez-Murillo, International Agreement Report - Assessment of TRACE 4.160 and 5.0 against RCP Trip Transient in Almaraz I Nuclear Power Plant, NUREG/IA-0233, 2010.
  7. J. Montero-Mayorga, C. Queral, J. Gonzalez-Cadelo, Effects of delayed RCP trip during SBLOCA in PWR, Ann. Nucl. Energy 63 (2014) 107-125, https://doi.org/10.1016/j.anucene.2013.06.030.
  8. J. Gonzalez-Cadelo, C. Queral, J. Montero-Mayorga, Analysis of cold leg LOCA with failed HPSI by means of integrated safety assessment methodology, Ann. Nucl. Energy 69 (2014) 144-167, https://doi.org/10.1016/j.anucene.2014.02.001.
  9. R. Salvatori, Westinghouse Anticipated Transient without Trip Analysis, 1974. WCAP-8330.
  10. P.J. Jensen, K.D. Richert, J. Chao, Parametric study of an anticipated transient without Scram in a Westinghouse four-loop plant, Nucl. Technol. 76 (1987) 290-302, https://doi.org/10.13182/NT87-A33882.
  11. B.S. Pei, G.P. Yu, G.C. Lin, Y.P. Ma, Assessment of the safety function for the anticipated transient without trip mitigation system actuation circuitry at Maanshan Nuclear Power Station, Nucl. Technol. 90 (1990) 49-62, https://doi.org/10.13182/NT90-A34385.
  12. J. Posada, F. Reventos, J. Sanchez-Baptista, A.A. Perez-Navas, P. Moreno, International Agreement Report, Study of Transients Related to AMSAC Actuation, Sensitivity Analysis, NUREG/IA-0150, 1998.
  13. J.R. Wang, C.H. Chen, H.T. Lin, C. Shih, K. Tien, NUREG/IA-0436, Assessment of LONF ATWS for Maanshan PWR Using TRACE Code, 2014.
  14. C.H. Chen, J.R. Wang, H.T. Lin, C. Shih, ATWS analysis for Maanshan PWR using TRACE/SNAP code, Ann. Nucl. Energy 72 (2014) 1-10, https://doi.org/10.1016/J.ANUCENE.2014.04.025.
  15. G.R. Andre, R.D. Ankney, C.F. Doumont, P.J. Kotwicki, T.J. Matty, E.M. Monahan, WOG Risk-Informed ATWS Assessment and Licensing Implementation Process, vol. 2, 2007. WCAP-15831-NP-A, Revision.
  16. M.J. Rebollo, Analysis of the ATWS Sequences in PWR - Westinghouse Nuclear Reactors (In Spanish), PhD Thesis, Universidad Politecnica de Madrid, 2018, https://doi.org/10.20868/UPM.thesis.53173.
  17. Westinghouse Electric Company, AP1000 Probabilistic Risk Assessment Report. Chapter 59 Appendix A. Thermal Hydraulic Analysis to Support Success Criteria, 2003.
  18. C. Queral, J. Montero-Mayorga, J. Rivas-Lewicky, M.J. Rebollo, Verification of AP1000® low-margin PRA sequences based on best-estimate calculations, Ann. Nucl. Energy 104 (2017) 9-27, https://doi.org/10.1016/J.ANUCENE.2017.02.001.
  19. C. Queral, K. Fernandez-Cosials, E. Zugazagoitia, C. Paris, J. Magan, R. Mendizabal, J. Posada, Application of Expanded Event Trees combined with uncertainty analysis methodologies, Reliab. Eng. Syst. Saf. 205 (2021), 107246, https://doi.org/10.1016/J.RESS.2020.107246.
  20. C. Queral, J. Gomez-Magan, C. Paris, J. Rivas-Lewicky, M. Sanchez-Perea, J. Gil, J. Mula, E. Melendez, J. Hortal, J.M. Izquierdo, I. Fernandez, Dynamic eventtrees without success criteria for full spectrum LOCA sequences applying the integrated safety assessment (ISA) methodology, Reliab. Eng. Syst. Saf. 171 (2018) 152-168, https://doi.org/10.1016/J.RESS.2017.11.004.
  21. L. Ibanez, J. Hortal, C. Queral, J. Gomez-Magan, M. Sanchez-Perea, I. Fernandez, E. Melendez, A. Exposito, J.M. Izquierdo, J. Gil, H. Marrao, E. Villalba-Jabonero, Application of the integrated safety assessment methodology to safety margins. Dynamic event trees, damage domains and risk assessment, Reliab. Eng. Syst. Saf. 147 (2016) 170-193, https://doi.org/10.1016/J.RESS.2015.05.016.