• Title/Summary/Keyword: Risk-informed methodology

Search Result 19, Processing Time 0.025 seconds

A STUDY ON METHODOLOGY FOR IDENTIFYING CORRELATIONS BETWEEN LERF AND EARLY FATALITY

  • Kang, Kyungmin;Jae, Moosung;Ahn, Kwang-Il
    • Nuclear Engineering and Technology
    • /
    • v.44 no.7
    • /
    • pp.745-754
    • /
    • 2012
  • The correlations between Large Early Release Frequency (LERF) and Early Fatality need to be investigated for risk-informed application and regulation. In Regulatory Guide (RG) -1.174, while there are decision-making criteria using the measures of Core Damage Frequency (CDF) and LERF, there are no specific criteria on LERF. Since there are both huge uncertainties and large costs needed in off-site consequence calculation, a LERF assessment methodology needs to be developed, and its correlation factor needs to be identified, for risk-informed decision-making. A new method for estimating off-site consequence has been presented and performed for assessing health effects caused by radioisotopes released from severe accidents of nuclear power plants in this study. The MACCS2 code is used for validating the source term quantitatively regarding health effects, depending on the release characteristics of radioisotopes during severe accidents. This study developed a method for identifying correlations between LERF and Early Fatality and validates the results of the model using the MACCS2 code. The results of this study may contribute to defining LERF and finding a measure for risk-informed regulations and risk-informed decision-making.

Present Status of Fire PSA Methodology for Risk-Informed Application (위험도 정보 활용을 위한 화재 PSA 방법론 개선 연구 현황)

  • 이윤환;양준언
    • Fire Science and Engineering
    • /
    • v.17 no.1
    • /
    • pp.40-45
    • /
    • 2003
  • In this paper many vulnerable areas of the present fire PSA methodology were revealed to apply risk-informed fire protection to nuclear power plants. The results and insights from the fro PSA should be used as a part of a risk-informed decision making process rather than the complete technical basis for decision making. The degree of support and scope of applications is dependent on the accuracy and validity of the model used in the fire PSA. Accordingly; the usefulness of the fire PSA will increase as ongoing research and development efforts lead to improvements in the state of the art technology and as improvements in the implementation of the state of the art technology lead to more consistent results.

On the use of time-dependent success criteria within risk-informed analyses. Application to LONF-ATWS sequences in PWR reactors

  • Jorge Sanchez-Torrijos;Cesar Queral;Carlos Paris;Maria Jose Rebollo;Miguel Sanchez-Perea;Jose Maria Posada
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4601-4619
    • /
    • 2022
  • The classical Probabilistic Safety Analysis (PSA) does not include any time dependence explicitly. However, the success criteria (SC) could evolve during the cycle for some initiating events. In that sense, there is a type of sequence in which this time-dependency is quite important, the family of Anticipated Transient without Scram (ATWS) sequences in Pressurized Water Reactors. Therefore, a new risk-informed approach is proposed in this paper, which makes it possible to obtain the time-dependent SC evolution of the safety functions affected by the Moderator Temperature Coefficient (MTC) value. Then, the evolution of the ATWS conditional core damage probability (CCDP) could be obtained using a PSA model. To quantify the CCDP, the average values of the time-dependent failure probabilities must be computed. Finally, the comparison between the CCDP obtained through the application of the classical PSA approach and the new one makes it possible to quantify the impact of time-dependence on the SC of the headers that this new risk-informed ATWS approach can provide.

Radiological Risk Assessment for the Public Under the Loss of Medium and Large Sources Using Bayesian Methodology (베이지안 기법에 의거한 중대형 방사선원의 분실 시 일반인에 대한 방사선 위험도의 평가)

  • Kim, Joo-Yeon;Jang, Han-Ki;Lee, Jai-Ki
    • Journal of Radiation Protection and Research
    • /
    • v.30 no.2
    • /
    • pp.91-97
    • /
    • 2005
  • Bayesian methodology is appropriated for use in PRA because subjective knowledges as well as objective data are applied to assessment. In this study, radiological risk based on Bayesian methodology is assessed for the loss of source in field radiography. The exposure scenario for the lost source presented in U.S. NRC is reconstructed by considering the domestic situation and Bayes theorem is applied to updating of failure probabilities of safety functions. In case of updating of failure probabilities, it shows that 5 % Bayes credible intervals using Jeffreys prior distribution are lower than ones using vague prior distribution. It is noted that Jeffreys prior distribution is appropriated in risk assessment for systems having very low failure probabilities. And, it shows that the mean of the expected annual dose for the public based on Bayesian methodology is higher than the dose based on classical methodology because the means of the updated probabilities are higher than classical probabilities. The database for radiological risk assessment are sparse in domestic. It summarizes that Bayesian methodology can be applied as an useful alternative lot risk assessment and the study on risk assessment will be contributed to risk-informed regulation in the field of radiation safety.

CONSTRUCTION SCHEDULE DELAY RISK ASSESSMENT BY USING COMBINED AHP-RII METHODOLOGY FOR AN INTERNATIONAL NPP PROJECT

  • HOSSEN, MUHAMMED MUFAZZAL;KANG, SUNKOO;KIM, JONGHYUN
    • Nuclear Engineering and Technology
    • /
    • v.47 no.3
    • /
    • pp.362-379
    • /
    • 2015
  • In this study, Nuclear Power Plant (NPP) construction schedule delay risk assessment methodology is developed and the construction delay risk is assessed for turnkey international NPP projects. Three levels of delay factors were selected through literature review and discussions with nuclear industry experts. A questionnaire survey was conducted on the basis of an analytic hierarchy process (AHP) and Relative Importance Index (RII) methods and the schedule delay risk is assessed qualitatively and quantitatively by severity and frequency of occurrence of delay factors. This study assigns four main delay factors to the first level: main contractor, utility, regulatory authority, and financial and country factor. The second and the third levels are designed with 12 sub-factors and 32 sub-sub-factors, respectively. This study finds the top five most important sub-sub-factors, which are as follows: policy changes, political instability and public intervention; uncompromising regulatory criteria and licensing documents conflicting with existing regulations; robust design document review procedures; redesign due to errors in design and design changes; and worldwide shortage of qualified and experienced nuclear specific equipment manufacturers. The proposed combined AHP-RII methodology is capable of assessing delay risk effectively and efficiently. Decision makers can apply risk informed decision making to avoid unexpected construction delays of NPPs.

PROBABILISTIC SEISMIC HAZARD ANALYSIS FOR NUCLEAR POWER PLANTS - CURRENT PRACTICE FROM A EUROPEAN PERSPECTIVE

  • Klugel, Jens-Uwe
    • Nuclear Engineering and Technology
    • /
    • v.41 no.10
    • /
    • pp.1243-1254
    • /
    • 2009
  • The paper discusses the methodology and the use of probabilistic seismic hazard analysis (PSHA) for nuclear power plants from a European perspective. The increasing importance of risk-informed approaches in the nuclear oversight process observed in many countries has contributed to increasing attention to PSHA methods. Nevertheless significant differences with respect to the methodology of PSHA are observed in Europe. The paper gives an overview on actual projects and discusses the differences in the PSHA-methodology applied in different European countries. These differences are largely related to different approaches used for the treatment of uncertainties and to the use of experts. The development of a probabilistic scenario-based approach is identified as a meaningful alternative to the development of uniform hazard spectra or uniform confidence spectra.

Design Improvement to a Research Reactor for Safety Enhancement using PSA (PSA를 이용한 연구용 원자로 안전성 향상 방안 도출)

  • Lee, Yoon-Hwan
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.5
    • /
    • pp.157-163
    • /
    • 2018
  • This paper describes design improvement to a research rector for safety enhancement using Probabilistic Safety Assessment (PSA). This PSA under reactor design was undertaken to assess the level of safety for the design of a research reactor and to evaluate whether it is probabilistically safe to operate and reliable to use. The scope of the PSA reported here is a Level 1 PSA, which addresses the risks associated with the core damage. The technical objectives of this study were to identify accident sequences leading to core damage and to derive design improvement from the dominant accident sequences through the sensitivity analysis. The AIMS-PSA and FTREX were used for the this PSA of the research reactor. The criterion for inclusion was all sequences with a point estimate frequency greater than a truncation value of 1.0E-14/yr. The final result indicates a point estimate of 6.79E-05/yr for the overall Core Damage Frequency (CDF) attributable to internal initiating events for the research reactor under design. Based on the dominant accident sequences from the PSA, the seven kinds of sensitivity analysis were performed and some design improvement items were derived. When the five methods to improve the safety were all applied to the reactor design and emergency operating procedure, its risk was reduced to about 1.21E-06/yr from 6.79E-05/yr. The contribution of LOCA and LOEP with high CDF were significantly reduced by the sensitivity analysis. The safety of the research reactor was well improved and the risk was reduced than before adapting the design improvement gotten from the sensitivity analysis. The present study indicated that the research reactor has the well-balanced safety in regard to each initiating event contribution to CDF. The PSA methodology is very effective to improve reactor safety in a conceptual design phase and especially, Risk-informed design(RID) is very nice way to find the deficiencies of research reactor under design and to improve the reactor safety by solving them.