DOI QR코드

DOI QR Code

Investigation of decontamination characteristics of a serial multiple pool scrubber system for consequence mitigation of severe accidents

  • Hyeon Ho Byun (Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology) ;
  • Man-Sung Yim (Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology)
  • 투고 : 2022.01.23
  • 심사 : 2022.08.17
  • 발행 : 2022.12.25

초록

A pool scrubber is often used as a wet-type design to mitigate the consequence of a severe nuclear accident. While studies indicated higher decontamination performance of a deeper pool, utilizing a very tall pool can be problematic due to potential structural stability and water backflow issues. This study proposes, as an alternative to a single pool system, a pool scrubber system composed of serially connected multiple pools with lower heights. Since large fraction of aerosol removal takes place in the injection region, serially connected pool scrubber system is expected to enhance the overall decontamination capability of a pool scrubber system. To support the analysis of the proposed system's decontamination capability, a new computer model was developed in the study to describe the bubble size dependent effect on aerosol removal including the effect of pool residence time. The accuracy of the new model was examined against experimental data for its validation. The proposed scrubber system composed of serially connected multiple shorter pools is found to have much improved decontamination performance over the current single pool system design.

키워드

과제정보

This research was supported by National Nuclear R&D Program (Human Resources Program in Energy Technology) through the National Research Foundation of Korea (NRF) by the Ministry of Science and ICT NRF-2021M2D1A1084847.

참고문헌

  1. S.W. Lee, T.H. Hong, Y.J. Choi, M.R. Seo, H.T. Kim, Containment Depressurization Capabilities of Filtered Venting System in 1000 MWe PWR with Large Dry Containment, Science and Technology of Nuclear Installations, 2014, 2014.
  2. IAEA, Severe Accident Mitigation through Improvements in Filtered Containment Vent Systems and Containment Cooling Strategies for Water Cooled Reactors, IAEA-TECDOC-1812, 2015.
  3. Susan A. Ramsdale, Salih Guntay, Hans-Gunter Friederichs, BUSCA-JUN91 Reference Manual. No. PSI-95-05, Paul Scherrer Inst.(PSI), 1995.
  4. P.C. Owczarski, K.W. Burk, SPARC-90: A Code for Calculating Fission Product Capture in Suppression Pools. No. NUREG/CR-5765; PNL-7723. Nuclear Regulatory Commission, Washington, DC (United States). Div. Of Regulatory Applications, Pacific Northwest Lab., Richland, WA (United States), 1991.
  5. S. Kawamura, T. Kimura, F. Watanabe, K. Hirao, T. Narabayashi, Development of an organic iodine filter for filtered containment venting systems of nuclear power plants, Trans. At. Energy Soc 15 (4) (2016) 192-209. https://doi.org/10.3327/taesj.J15.025
  6. A. Dehbi, D. Suckow, S. Guentay, Aerosol retention in low-subcooling pools under realistic accident conditions, Nucl. Eng. Des. 203 (2-3) (2001) 229-241. https://doi.org/10.1016/S0029-5493(00)00343-5
  7. C. Berna, et al., Enhancement of the SPARC90 code to pool scrubbing events under jet injection regime, Nucl. Eng. Des. 300 (2016) 563-577. https://doi.org/10.1016/j.nucengdes.2016.02.027
  8. T. Albiol, L. Herranz, E. Riera, C. Dalibart, T. Lind, A. Del Corno, L. Cantrel, Main results of the European PASSAM project on severe accident source term mitigation, Ann. Nucl. Energy 116 (2018) 42-56. https://doi.org/10.1016/j.anucene.2018.02.024
  9. H. Zhang, G. Yang, A. Sayyar, T. Wang, An improved bubble breakup model in turbulent flow, Chem. Eng. J. 386 (2020), 121484.
  10. D.D. Paul, L.J. Flanigan, J.C. Cunnane, R.A. Cudnik, R.P. Collier, R.N. Oehlberg, Radionuclide Scrubbing in Water Pools-Gas-Liquid Hydrodynamics (No. EPRI-NP-4113-SR), 1985.
  11. Michael J. Prince, Harvey W. Blanch, Bubble coalescence and break-up in airsparged bubble columns, AIChE J. 36 (10) (1990) 1485-1499. https://doi.org/10.1002/aic.690361004
  12. Hean Luo, Hallvard F. Svendsen, Theoretical model for drop and bubble breakup in turbulent dispersions, AIChE J. 42 (5) (1996) 1225-1233. https://doi.org/10.1002/aic.690420505
  13. C. Tsouris, L.L. Tavlarides, Breakage and coalescence models for drops in turbulent dispersions, AIChE J. 40 (3) (1994) 395-406. https://doi.org/10.1002/aic.690400303
  14. C. Martinez-Bazan, J.L. Montanes, Juan C. Lasheras, On the breakup of an air bubble injected into a fully developed turbulent flow. Part 1. Breakup frequency, J. Fluid Mech. 401 (1999) 157-182. https://doi.org/10.1017/S0022112099006680
  15. C. Martinez-Bazan, J.L. Montanes, Juan C. Lasheras, On the breakup of an air bubble injected into a fully developed turbulent flow. Part 2. Size PDF of the resulting daughter bubbles, J. Fluid Mech. 401 (1999) 183-207. https://doi.org/10.1017/S0022112099006692
  16. H. Zhang, G. Yang, A. Sayyar, T. Wang, An improved bubble breakup model in turbulent flow, Chem. Eng. J. 386 (2020), 121484.
  17. A.N. Kolmogorov, On the breakage of drops in a turbulent flow, Dokl. Akad. Nauk SSSR 66 (5) (1949) 825.
  18. J. Lopez-Jimenez, J. Herranz, M.J. Escudero, M.M. Espigares, V. Peyres, J. Polo, A. Alonso, Pool Scrubbing (No. CIEMAT-805), Centro de Investigaciones Energeticas, 1996.
  19. L.W. He, Y.X. Li, Y. Zhou, S. Chen, L.L. Tong, X.W. Cao, Investigation on aerosol pool scrubbing model during severe accidents, Front. Energy Res. 503 (2021).
  20. W.Y. Jung, D.Y. Lee, J.H. Kang, M.S. Ko, B.K. Kim, J. Lee, K.S. Ha, Experimental study of pool scrubbing under horizontal gas injection, Ann. Nucl. Energy 171 (2022), 109014.
  21. J. Lee, W.Y. Jung, H.C. Lee, G.T. Kim, D.Y. Lee, Experimental study on aerosol scrubbing efficiency of self-priming venturi scrubber submerged in water pool, Ann. Nucl. Energy 114 (2018) 571-585. https://doi.org/10.1016/j.anucene.2017.12.052
  22. N.A. Fuchs, R.E. Daisley, M. Fuchs, C.N. Davies, M.E. Straumanis, The mechanics of aerosols, Phys. Today 18 (4) (1965) 73.
  23. Batchelor, Brownian diffusion of particles with hydrodynamic interaction, J. Fluid Mech. 74 (1) (1976) 1-29. GK406082. https://doi.org/10.1017/S0022112076001663
  24. James R. Brock, On the theory of thermal forces acting on aerosol particles, J. Colloid Sci. 17 (8) (1962) 768-780. https://doi.org/10.1016/0095-8522(62)90051-X
  25. M. Jamialahmadi, C. Branch, H.M. Steinhagen, Terminal bubble rise velocity in liquids, Chem. Eng. Res. Des. 72 (A) (1994) 119.
  26. S. Baz-Rodriguez, A. Aguilar-Corona, A. Soria, Rising velocity for single bubbles in pure liquids, Rev. Mex. Ing. Quim. 11 (2) (2012) 269-278.
  27. T. Demitrack, F.J. Moody, Planetary ellipsoid bubble model for fission product scrubbing, Trans. Am. Nucl. Soc. 45 (1983).
  28. K. Fujiwara, W. Kikuchi, Y. Nakamura, T. Yuasa, S. Saito, A. Kaneko, Y. Abe, Experimental study of single-bubble behavior containing aerosol during pool scrubbing, Nucl. Eng. Des. 348 (2019) 159-168. https://doi.org/10.1016/j.nucengdes.2019.04.015
  29. Shichang Dong, Xiafeng Zhou, Jun Yang, Thermal-hydraulic behaviors of a wet scrubber filtered containment venting system in 1000 MWe PWR with two venting strategies for long-term operation, Nucl. Eng. Technol. 52 (7) (2020) 1396-1408 (s). https://doi.org/10.1016/j.net.2019.12.013