DOI QR코드

DOI QR Code

Continuous W-Cu functional gradient material from pure W to W-Cu layer prepared by a modified sedimentation method

  • Bangzheng Wei (School of Materials Science and Engineering, Hefei University of Technology) ;
  • Rui Zhou (School of Materials Science and Engineering, Hefei University of Technology) ;
  • Dang Xu (School of Materials Science and Engineering, Hefei University of Technology) ;
  • Ruizhi Chen (School of Materials Science and Engineering, Hefei University of Technology) ;
  • Xinxi Yu (School of Materials Science and Engineering, Hefei University of Technology) ;
  • Pengqi Chen (School of Materials Science and Engineering, Hefei University of Technology) ;
  • Jigui Cheng (School of Materials Science and Engineering, Hefei University of Technology)
  • 투고 : 2022.01.20
  • 심사 : 2022.08.04
  • 발행 : 2022.12.25

초록

The thermal stress between W plasma-facing material (PFM) and Cu heat sink in fusion reactors can be significantly reduced by using a W-Cu functionally graded material (W-Cu FGM) interlayer. However, there is still considerable stress at the joining interface between W and W-Cu FGM in the W/W-Cu FGM/Cu portions. In this work, we fabricate W skeletons with continuous gradients in porosity by a modified sedimentation method. Sintering densification behavior and pore characteristics of the sedimented W skeletons at different sintering temperatures were investigated. After Cu infiltration, the final W-Cu FGM was obtained. The results indicate that the pore size and porosity in the W skeleton decrease gradually with the increase of sintering temperature, but the increase of skeleton sintering temperature does not reduce the gradient range of composition distribution of the final prepared W-Cu FGM. And W-Cu FGM with composition distribution from pure W to W-20.5wt.% Cu layer across the section was successfully obtained. The thickness of the pure W layer is about one-fifth of the whole sample thickness. In addition, the prepared W-Cu FGM has a relative density of 94.5 % and thermal conductivity of 185 W/(m·K). The W-Cu FGM prepared in this work may provide a good solution to alleviate the thermal stress between W PFM and Cu heat sink in the fusion reactors.

키워드

과제정보

This work was financially supported by the program of the National Natural Science Foundation of China (52004079, 51674095), and the National Key Research and Development Program of China (2022YFE0109700).

참고문헌

  1. L.K. Pillari, S.R. Bakshi, P. Chaudhuri, B.S. Murty, Fabrication of W-Cu functionally graded composites using high energy ball milling and spark plasma sintering for plasma facing components, Adv. Powder Technol. 31 (8) (2020) 3657-3666. https://doi.org/10.1016/j.apt.2020.07.015
  2. E. Autissier, M. Richou, L. Minier, J.L. Gardarein, F. Bernard, Elaboration and thermomechanical characterization of W/Cu functionally graded materials produced by Spark Plasma Sintering for plasma facing components, Fusion Eng. Des. 98-99 (2015) 1929-1932. https://doi.org/10.1016/j.fusengdes.2015.05.066
  3. A. Yusefi, N. Parvin, Fabrication of three layered W-Cu functionally graded composite via spark plasma sintering, Fusion Eng. Des. 114 (2017) 196-202. https://doi.org/10.1016/j.fusengdes.2016.11.013
  4. Y. Ueda, J.W. Coenen, G. De Temmerman, R.P. Doerner, J. Linke, V. Philipps, E. Tsitrone, Research status and issues of tungsten plasma facing materials for ITER and beyond, Fusion Eng. Des. 89 (7-8) (2014) 901-906. https://doi.org/10.1016/j.fusengdes.2014.02.078
  5. S. Wurster, N. Baluc, M. Battabyal, T. Crosby, J. Du, C. Garcia-Rosales, A. Hasegawa, A. Hoffmann, A. Kimura, H. Kurishita, R.J. Kurtz, H. Li, S. Noh, J. Reiser, J. Riesch, M. Rieth, W. Setyawan, M. Walter, J.H. You, R. Pippan, Recent progress in R&D on tungsten alloys for divertor structural and plasma facing materials, J. Nucl. Mater. 442 (1-3) (2013) S181-S189. https://doi.org/10.1016/j.jnucmat.2013.02.074
  6. H. Chen, Q. Xu, J. Wang, P. Li, J. Yuan, B. Lyu, J. Wang, K. Tokunaga, G. Yao, L. Luo, Y. Wu, Effect of surface quality on hydrogen/helium irradiation behavior in tungsten, Nucl. Eng. Technol. 54 (6) (2021) 1947-1953.
  7. D. Jiang, J. Long, M. Cai, Y. Lin, P. Fan, H. Zhang, M. Zhong, Femtosecond laser fabricated micro/nano interface structures toward enhanced bonding strength and heat transfer capability of W/Cu joining, Mater. Des. 114 (2017) 185-193. https://doi.org/10.1016/j.matdes.2016.11.094
  8. R. Mitteau, J.M. Missiaen, P. Brustolin, O. Ozer, A. Durocher, C. Ruset, C.P. Lungu, X. Courtois, C. Dominicy, H. Maier, C. Grisolia, G. Piazza, P. Chappuis, Recent developments toward the use of tungsten as armour material in plasma facing components, Fusion Eng. Des. 82 (15-24) (2007) 1700-1705. https://doi.org/10.1016/j.fusengdes.2007.01.003
  9. J.H. You, E. Visca, C. Bachmann, T. Barrett, F. Crescenzi, M. Fursdon, H. Greuner, D. Guilhem, P. Languille, M. Li, S. McIntosh, A.V. Muller, J. Reiser, M. Richou, M. Rieth, European DEMO divertor target: operational requirements and material-design interface, Nucl. Mater. Energy 9 (2016) 171-176. https://doi.org/10.1016/j.nme.2016.02.005
  10. S. Van den Kerkhof, M. Blommaert, J.W. Coenen, M. Baelmans, Optimized design of a tungsten-copper functionally graded material monoblock for minimal von Mises stress meeting the material operational temperature window, Nucl. Fusion 61 (2021), 046050.
  11. C. Tan, K. Zhou, T. Kuang, Selective laser melting of tungsten-copper functionally graded material, Mater. Lett. 237 (2019) 328-331. https://doi.org/10.1016/j.matlet.2018.11.127
  12. D. Sun, Y. Wang, S. Huang, J. Zhao, G. Liu, J. Li, Plasma facing component with built-in tungsten wires and a W-Cu functionally graded layer: a finite element assessment, Fusion Eng. Des. 120 (2017) 9-14. https://doi.org/10.1016/j.fusengdes.2017.05.006
  13. D. Jiang, J. Long, J. Han, M. Cai, Y. Lin, P. Fan, H. Zhang, M. Zhong, Comprehensive enhancement of the mechanical and thermo-mechanical properties of W/Cu joints via femtosecond laser fabricated micro/nano interface structures, Mater. Sci. Eng. A 696 (2017) 429-436. https://doi.org/10.1016/j.msea.2017.04.063
  14. S. Saito, K. Fukaya, S. Ishiyama, K. Sato, Mechanical properties of HIP bonded W and Cu-alloys joint for plasma facing components, J. Nucl. Mater. 307 (2) (2002) 1542-1546.
  15. C. Hou, X. Song, F. Tang, Y. Li, L. Cao, J. Wang, Z. Nie, W-Cu composites with submicron- and nanostructures: progress and challenges, NPG Asia Mater. 11 (1) (2019).
  16. Q. Li, C. Xie, W. Wang, J. Wang, X. Wang, Q. Gao, Z. Chen, W. Peng, Z. Yang, G.N. Luo, Optimization of W/Cu monoblock mock-up with FGM interlayer for CFETR devertor targets, Fusion Eng. Des. 147 (2019), 111262.
  17. P. Zhao, S. Guo, G. Liu, Y. Chen, J. Li, Fabrication of W-Cu functionally graded material with improved mechanical strength, J. Alloy. Compd. 601 (2014) 289-292. https://doi.org/10.1016/j.jallcom.2014.01.180
  18. J. Song, Y. Yu, Z. Zhuang, Y. Lian, X. Liu, Y. Qi, Preparation of W-Cu functionally graded material coated with CVD-W for plasma-facing components, J. Nucl. Mater. 442 (1-3) (2013) S208-S213. https://doi.org/10.1016/j.jnucmat.2013.01.326
  19. R. Liu, T. Hao, K. Wang, T. Zhang, X.P. Wang, C.S. Liu, Q.F. Fang, Microwave sintering of W/Cu functionally graded materials, J. Nucl. Mater. 431 (1-3) (2012) 196-201. https://doi.org/10.1016/j.jnucmat.2011.11.013
  20. Z.-J. Zhou, S.-X. Song, J. Du, Z.-H. Zhong, C.-C. Ge, Performance of W/Cu FGM based plasma facing components under high heat load test, J. Nucl. Mater. 363-365 (2007) 1309-1314. https://doi.org/10.1016/j.jnucmat.2007.01.184
  21. G. Pintsuk, I. Smid, J.E. Doring, W. Hohenauer, J. Linke, Fabrication and characterization of vacuum plasma sprayed W/Cu-composites for extreme thermal conditions, J. Mater. Sci. 42 (1) (2006) 30-39.
  22. B. Wang, D. Zhu, C. Li, J. Chen, Performance of full compositional W/Cu functionally gradient materials under quasi-steady-state heat loads, IEEE Trans. Plasma Sci. 46 (2018) 1551-1555. https://doi.org/10.1109/TPS.2018.2803898
  23. H. Yan, J. Fan, Y. Han, Q. Yao, T. Liu, Y. Lv, C. Zhang, Vacuum diffusion bonding W to W-Cu composite: interfacial microstructure and mechanical properties, Vacuum 165 (2019) 19-25. https://doi.org/10.1016/j.vacuum.2019.03.060
  24. S. Van Den Kerkhof, M. Blommaert, J. Coenen, S. Heuer, M. Baelmans, Investigating the potential of FGMs through numerical minimization of thermal stresses, Physica Scripta 2020 (2020), 014001.
  25. Q. Li, C. Xie, W. Wang, J. Wang, X. Wang, Q. Gao, Z. Chen, W. Peng, Z. Yang, G.N. Luo, Optimization of W/Cu monoblock mock-up with FGM interlayer for CFETR devertor targets, Fusion Eng. Des. 147 (2019), 111262.
  26. M. Richou, F. Gallay, B. Boswirth, I. Chu, G. Dose, H. Greuner, G. Kermouche, M. Lenci, T. Loewenhoff, R. Maestracci, E. Meillot, M. Missirlian, J.Y. Pastor, A. Quet, S. Roccella, E. Tejado, M. Wirtz, E. Visca, G. Pintsuk, J.H. You, Performance assessment of thick W/Cu graded interlayer for DEMO divertor target, Fusion Eng. Des. 157 (2020), 111610.
  27. P.M. Biesheuvel, H. Verweij, Calculation of the composition profile of a functionally graded material produced by centrifugal casting, J. Am. Ceram. Soc. 83 (4) (2010) 743-749.
  28. R. Jedamzik, A. Neubrand, J. Rodel, Functionally graded materials by electrochemical processing and infiltration: application to tungsten/copper composites, J. Mater. Sci. 35 (2) (2000) 477-486. https://doi.org/10.1023/A:1004735904984
  29. Z.M. Yang, L.M. Zhang, Q. Shen, Preparation of Ti-Mo system functionally graded materials by co-sedimentation, Trans. Nonferrous Met. Soc. China 10 (6) (2000) 761-763.
  30. M. Naebe, K. Shirvanimoghaddam, Functionally graded materials: a review of fabrication and properties, Appl. Mater. Today 5 (2016) 223-245. https://doi.org/10.1016/j.apmt.2016.10.001
  31. Z.M. Yang, F. Tian, L.M. Zhang, Theoretical study on two sedimentation processes used to form functionally graded materials, J. Mater. Sci. Lett. 22 (10) (2003) 739-741. https://doi.org/10.1023/A:1023799825814
  32. W. Chen, Y. Shi, L. Dong, L. Wang, H. Li, Y. Fu, Infiltration sintering of WCu alloys from copper-coated tungsten composite powders for superior mechanical properties and arc-ablation resistance, J. Alloy. Compd. 728 (2017) 196-205. https://doi.org/10.1016/j.jallcom.2017.08.164
  33. B. Wei, X. Yu, R. Chen, P. Chen, J. Cheng, A novel approach to fabricate W-Cu functionally graded materials via sedimentation and infiltration method, Mater. Sci. Eng. A 816 (2021), 141276.
  34. B. Li, Z. Sun, G. Hou, F. Ding, P. Hu, F. Yuan, The sintering behavior of quasi-spherical tungsten nanopowders, Int. J. Refract. Met. H. Mater. 56 (2016) 44-50. https://doi.org/10.1016/j.ijrmhm.2015.10.007
  35. K. Maca, S. Simonikova, Effect of sintering schedule on grain size of oxide ceramics, J. Mater. Sci. 40 (2005) 5581-5589. https://doi.org/10.1007/s10853-005-1332-1
  36. Z. Dong, N. Liu, W. Hu, X. Kong, Z. Ma, Y. Liu, The effect of Y2O3 on the grain growth and densification of W matrix during low temperature sintering: experiments and modelling, Mater. Des. 181 (2019), 108080.