• Title/Summary/Keyword: Continuously functional graded materials

Search Result 2, Processing Time 0.016 seconds

Buckling analysis of functionally graded truncated conical shells under external displacement-dependent pressure

  • Khayat, Majid;Poorveis, Davood;Moradi, Shapour
    • Steel and Composite Structures
    • /
    • v.23 no.1
    • /
    • pp.1-16
    • /
    • 2017
  • This paper is presented to solve the buckling problem of functionally graded truncated conical shells subjected to displacement-dependent pressure which remains normal to the shell middle surface throughout the deformation process by the semi-analytical finite strip method. Material properties are assumed to be temperature dependent, and varied continuously in the thickness direction according to a simple power law distribution in terms of the volume fraction of a ceramic and metal. The governing equations are derived based on first-order shear deformation theory which accounts for through thickness shear flexibility with Sanders-type of kinematic nonlinearity. The element linear and geometric stiffness matrices are obtained using virtual work expression for functionally graded materials. The load stiffness also called pressure stiffness matrix which accounts for variation of load direction is derived for each strip and after assembling, global load stiffness matrix of the shell which may be un-symmetric is formed. The un-symmetric parts which are due to load non-uniformity and unconstrained boundaries have been separated. A detailed parametric study is carried out to quantify the effects of power-law index of functional graded material and shell geometry variations on the difference between follower and non-follower lateral buckling pressures. The results indicate that considering pressure stiffness which arises from follower action of pressure causes considerable reduction in estimating buckling pressure.

Continuous W-Cu functional gradient material from pure W to W-Cu layer prepared by a modified sedimentation method

  • Bangzheng Wei;Rui Zhou;Dang Xu;Ruizhi Chen;Xinxi Yu;Pengqi Chen;Jigui Cheng
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4491-4498
    • /
    • 2022
  • The thermal stress between W plasma-facing material (PFM) and Cu heat sink in fusion reactors can be significantly reduced by using a W-Cu functionally graded material (W-Cu FGM) interlayer. However, there is still considerable stress at the joining interface between W and W-Cu FGM in the W/W-Cu FGM/Cu portions. In this work, we fabricate W skeletons with continuous gradients in porosity by a modified sedimentation method. Sintering densification behavior and pore characteristics of the sedimented W skeletons at different sintering temperatures were investigated. After Cu infiltration, the final W-Cu FGM was obtained. The results indicate that the pore size and porosity in the W skeleton decrease gradually with the increase of sintering temperature, but the increase of skeleton sintering temperature does not reduce the gradient range of composition distribution of the final prepared W-Cu FGM. And W-Cu FGM with composition distribution from pure W to W-20.5wt.% Cu layer across the section was successfully obtained. The thickness of the pure W layer is about one-fifth of the whole sample thickness. In addition, the prepared W-Cu FGM has a relative density of 94.5 % and thermal conductivity of 185 W/(m·K). The W-Cu FGM prepared in this work may provide a good solution to alleviate the thermal stress between W PFM and Cu heat sink in the fusion reactors.