DOI QR코드

DOI QR Code

Fishing for synucleinopathy models

  • Noor, Suzita Mohd (Department of Biomedical Science, Faculty of Medicine, University of Malaya) ;
  • Norazit, Anwar (Department of Biomedical Science, Faculty of Medicine, University of Malaya)
  • Received : 2021.10.15
  • Accepted : 2022.02.06
  • Published : 2022.03.31

Abstract

Synucleinopathies such as Parkinson's disease (PD) are incurable neurodegenerative conditions characterised by the abnormal aggregation of α-synuclein protein in neuronal cells. In PD, fibrillary synuclein aggregation forms Lewy bodies and Lewy neurites in the substantia nigra and cortex on the brain. Dementia with Lewy bodies and multiple system atrophy are also associated with α-synuclein protein abnormalities. α-synuclein is one of three synuclein proteins, and while its precise function is still unknown, one hypothesis posits that α-synuclein propagates from the enteric nervous system through the vagus nerve and into the brain, resulting in synucleinopathy. Studies on synucleinopathies should thus encompass not only the central nervous system but must necessarily include the gut and microbiome. The zebrafish (Danio rerio) is a well-established model for human neuronal pathologies and have been used in studies ranging from genetic models of hereditary disorders to neurotoxin-induced neurodegeneration as well as gut-brain-axis studies. There is significant genetic homology between zebrafish and mammalian vertebrates which is what makes the zebrafish so amenable to modelling human conditions but in the case of synucleinopathies, the zebrafish notably does not possess an α-synuclein homolog. Synuclein orthologs are present in the zebrafish however, and transgenic zebrafish that carry human α-synuclein have been generated. In addition, the zebrafish is a highly advantageous model and ideal replacement for reducing the use of mammalian models. This review discusses the application of the zebrafish as a model for synucleinopathies in efforts to further understand synuclein function and explore therapeutic strategies.

Keywords

References

  1. Abeliovich A, Schmitz Y, Farinas I, Choi-Lundberg D, Ho WH, Castillo PE, et al. Mice lacking alpha-synuclein display functional deficits in the nigrostriatal dopamine system. Neuron. 2000;25:239-52. https://doi.org/10.1016/S0896-6273(00)80886-7
  2. Adams-Carr KL, Bestwick JP, Shribman S, Lees A, Schrag A, Noyce AJ. Constipation preceding Parkinson's disease: a systematic review and meta-analysis. J Neurol Neurosurg Psychiatry. 2016;87:710-6. https://doi.org/10.1136/jnnp-2015-311680
  3. Ahmad M, Attoub S, Singh MN, Martin FL, El-Agnaf OMA. Gamma-synuclein and the progression of cancer. FASEB J. 2007;21:3419-30. https://doi.org/10.1096/fj.07-8379rev
  4. Alestrom P, D'Angelo L, Midtlyng PJ, Schorderet DF, Schulte-Merker S, Sohm F, et al. Zebrafish: housing and husbandry recommendations. Lab Anim. 2020;54:213-24. https://doi.org/10.1177/0023677219869037
  5. Allison JR, Rivers RC, Christodoulou JC, Vendruscolo M, Dobson CM. A relationship between the transient structure in the monomeric state and the aggregation propensities of α-synuclein and β-synuclein. Biochemistry. 2014;53:7170-83. https://doi.org/10.1021/bi5009326
  6. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403-10. https://doi.org/10.1016/S0022-2836(05)80360-2
  7. Anderson JP, Walker DE, Goldstein JM, de Laat R, Banducci K, Caccavello RJ, et al. Phosphorylation of Ser-129 is the dominant pathological modification of alpha-synuclein in familial and sporadic Lewy body disease. J Biol Chem. 2006;281:29739-52. https://doi.org/10.1074/jbc.M600933200
  8. Appel-Cresswell S, Vilarino-Guell C, Encarnacion M, Sherman H, Yu I, Shah B, et al. Alpha-synuclein p.H50Q, a novel pathogenic mutation for Parkinson's disease. Mov Disord. 2013;28:811-3. https://doi.org/10.1002/mds.25421
  9. Asakawa K, Kawakami K. The Tol2-mediated Gal4-UAS method for gene and enhancer trapping in zebrafish. Methods. 2009;49:275-81. https://doi.org/10.1016/j.ymeth.2009.01.004
  10. Bai Q, Burton EA. Zebrafish models of Tauopathy. Biochim Biophys Acta 2011;1812:353-63. https://doi.org/10.1016/j.bbadis.2010.09.004
  11. Baker PA, Meyer MD, Tsang A, Uribe RA. Immunohistochemical and ultrastructural analysis of the maturing larval zebrafish enteric nervous system reveals the formation of a neuropil pattern. Sci Rep. 2019;9:6941. https://doi.org/10.1038/s41598-019-43497-9
  12. Barbazuk WB, Korf I, Kadavi C, Heyen J, Tate S, Wun E, et al. The syntenic relationship of the zebrafish and human genomes. Genome Res. 2000;10:1351-8. https://doi.org/10.1101/gr.144700
  13. Barbereau C, Cubedo N, Maurice T, Rossel M. Zebrafish models to study new pathways in tauopathies. Int J Mol Sci. 2021;22:4626. https://doi.org/10.3390/ijms22094626
  14. Barnhill LM, Murata H, Bronstein JM. Studying the pathophysiology of Parkinson's disease using zebrafish. Biomedicines. 2020;8:197. https://doi.org/10.3390/biomedicines8070197
  15. Beach TG, Adler CH, Sue LI, Shill HA, Driver-Dunckley E, Mehta SH, et al. Vagus nerve and stomach synucleinopathy in Parkinson's disease, incidental Lewy body disease, and normal elderly subjects: evidence against the "body-first" hypothesis. J Parkinsons Dis. 2021;11:1833-43. https://doi.org/10.3233/JPD-212733
  16. Bedell VM, Westcot SE, Ekker SC. Lessons from morpholino-based screening in zebrafish. Brief Funct Genomics. 2011;10:181-8. https://doi.org/10.1093/bfgp/elr021
  17. Bendor JT, Logan TP, Edwards RH. The function of α-synuclein. Neuron. 2013;79:1044-66. https://doi.org/10.1016/j.neuron.2013.09.004
  18. Benner EJ, Banerjee R, Reynolds AD, Sherman S, Pisarev VM, Tsiperson V, et al. Nitrated α-synuclein immunity accelerates degeneration of nigral dopaminergic neurons. PLOS ONE. 2008;3:e1376. https://doi.org/10.1371/journal.pone.0001376
  19. Bernis ME, Babila JT, Breid S, Wusten KA, Wullner U, Tamguney G. Prion-like propagation of human brain-derived alpha-synuclein in transgenic mice expressing human wild-type alpha-synuclein. Acta Neuropathol Commun. 2015;3:75. https://doi.org/10.1186/s40478-015-0254-7
  20. Bertotto LB, Catron TR, Tal T. Exploring interactions between xenobiotics, microbiota, and neurotoxicity in zebrafish. Neurotoxicology. 2020;76:235-44. https://doi.org/10.1016/j.neuro.2019.11.008
  21. Beyer K. α-Synuclein structure, posttranslational modification and alternative splicing as aggregation enhancers. Acta Neuropathol. 2006;112:237-51. https://doi.org/10.1007/s00401-006-0104-6
  22. Beyer K, Ispierto L, Latorre P, Tolosa E, Ariza A. Alpha- and beta-synuclein expression in Parkinson disease with and without dementia. J Neurol Sci. 2011;310:112-7. https://doi.org/10.1016/j.jns.2011.05.049
  23. Bill BR, Petzold AM, Clark KJ, Schimmenti LA, Ekker SC. A primer for morpholino use in zebrafish. Zebrafish. 2009;6:69-77. https://doi.org/10.1089/zeb.2008.0555
  24. Blader P, Strahle U. Zebrafish developmental genetics and central nervous system development. Hum Mol Genet. 2000;9:945-51. https://doi.org/10.1093/hmg/9.6.945
  25. Bonini NM, Giasson BI. Snaring the function of α-synuclein. Cell. 2005;123:359-61. https://doi.org/10.1016/j.cell.2005.10.017
  26. Borghammer P, Horsager J, Andersen K, Van Den Berge N, Raunio A, Murayama S, et al. Neuropathological evidence of body-first vs. brain-first Lewy body disease. Neurobiol Dis. 2021;161:105557. https://doi.org/10.1016/j.nbd.2021.105557
  27. Borrelli L, Aceto S, Agnisola C, De Paolo S, Dipineto L, Stilling RM, et al. Probiotic modulation of the microbiota-gut-brain axis and behaviour in zebrafish. Sci Rep. 2016;6:30046. https://doi.org/10.1038/srep30046
  28. Braak H, Braak E. Pathoanatomy of Parkinson's disease. J Neurol. 2000;247:II3-II10. https://doi.org/10.1007/PL00007758
  29. Braak H, Rub U, Gai WP, Del Tredici K. Idiopathic Parkinson's disease: possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen. J Neural Transm. 2003;110:517-36. https://doi.org/10.1007/s00702-002-0808-2
  30. Burre J, Sharma M, Sudhof TC. Cell biology and pathophysiology of α-synuclein. Cold Spring Harb Perspect Med. 2018;8:a024091. https://doi.org/10.1101/cshperspect.a024091
  31. Cansiz D, unal I, ustundag uV, Alturfan AA, Altinoz MA, Elmaci I, et al. Caprylic acid ameliorates rotenone induced inflammation and oxidative stress in the gut-brain axis in Zebrafish. Mol Biol Rep. 2021;48:5259-73. https://doi.org/10.1007/s11033-021-06532-5
  32. Cantarero-Prieto D, Leon PL, Blazquez-Fernandez C, Juan PS, Cobo CS. The economic cost of dementia: a systematic review. Dementia. 2020;19:2637-57. https://doi.org/10.1177/1471301219837776
  33. Cariulo C, Martufi P, Verani M, Azzollini L, Bruni G, Weiss A, et al. Phospho-S129 alpha-synuclein is present in human plasma but not in cerebrospinal fluid as determined by an ultrasensitive immunoassay. Front Neurosci. 2019;13:889. https://doi.org/10.3389/fnins.2019.00889
  34. Chavarria C, Souza JM. Oxidation and nitration of α-synuclein and their implications in neurodegenerative diseases. Arch Biochem Biophys. 2013;533:25-32. https://doi.org/10.1016/j.abb.2013.02.009
  35. Chen M, Martins RN, Lardelli M. Complex splicing and neural expression of duplicated tau genes in zebrafish embryos. J Alzheimers Dis. 2009a;18:305-17. https://doi.org/10.3233/JAD-2009-1145
  36. Chen YC, Cheng CH, Chen GD, Hung CC, Yang CH, Hwang SPL, et al. Recapitulation of zebrafish sncga expression pattern and labeling the habenular complex in transgenic zebrafish using green fluorescent protein reporter gene. Dev Dyn. 2009b;238:746-54. https://doi.org/10.1002/dvdy.21877
  37. Cheng B, Yang X, An L, Gao B, Liu X, Liu S. Ketogenic diet protects dopaminergic neurons against 6-OHDA neurotoxicity via up-regulating glutathione in a rat model of Parkinson's disease. Brain Res. 2009;1286:25-31. https://doi.org/10.1016/j.brainres.2009.06.060
  38. Chepelev NL, Moffat ID, Bowers WJ, Yauk CL. Neurotoxicity may be an overlooked consequence of benzo[a]pyrene exposure that is relevant to human health risk assessment. Mutat Res Rev Mutat Res. 2015;764:64-89. https://doi.org/10.1016/j.mrrev.2015.03.001
  39. Choi TY, Choi TI, Lee YR, Choe SK, Kim CH. Zebrafish as an animal model for biomedical research. Exp Mol Med. 2021;53:310-7. https://doi.org/10.1038/s12276-021-00571-5
  40. Choong CJ, Say YH. Neuroprotection of α-synuclein under acute and chronic rotenone and maneb treatment is abolished by its familial Parkinson's disease mutations A30P, A53T and E46K. Neurotoxicology. 2011;32:857-63. https://doi.org/10.1016/j.neuro.2011.05.012
  41. Chou AP, Maidment N, Klintenberg R, Casida JE, Li S, Fitzmaurice AG, et al. Ziram causes dopaminergic cell damage by inhibiting E1 ligase of the proteasome. J Biol Chem. 2008;283:34696-703. https://doi.org/10.1074/jbc.M802210200
  42. Chu Y, Kordower JH. Age-associated increases of alpha-synuclein in monkeys and humans are associated with nigrostriatal dopamine depletion: is this the target for Parkinson's disease? Neurobiol Dis. 2007;25:134-49. https://doi.org/10.1016/j.nbd.2006.08.021
  43. Conforti L, Gilley J, Coleman MP. Wallerian degeneration: an emerging axon death pathway linking injury and disease. Nat Rev Neurosci. 2014;15:394-409. https://doi.org/10.1038/nrn3680
  44. Conway KA, Harper JD, Lansbury PT. Accelerated in vitro fibril formation by a mutant alpha-synuclein linked to early-onset Parkinson disease. Nat Med. 1998;4:1318-20. https://doi.org/10.1038/3311
  45. Coon EA, Singer W. Synucleinopathies. Continuum (Minneap Minn). 2020;26:72-92. https://doi.org/10.1212/con.0000000000000819
  46. Corey DR, Abrams JM. Morpholino antisense oligonucleotides: tools for investigating vertebrate development. Genome Biol. 2001;2:reviews1015.1.
  47. Cornet C, Di Donato V, Terriente J. Combining zebrafish and CRISPR/Cas9: toward a more efficient drug discovery pipeline. Front Pharmacol. 2018;9:703. https://doi.org/10.3389/fphar.2018.00703
  48. Cuomo M, Borrelli L, Della Monica R, Coretti L, De Riso G, D'Angelo Lancellotti di Durazzo L, et al. DNA methylation profiles of Tph1A and BDNF in gut and brain of L. Rhamnosus-treated zebrafish. Biomolecules. 2021;11:142. https://doi.org/10.3390/biom11020142
  49. Das SK, Aparna S, Patri M. Chronic waterborne exposure to benzo[a]pyrene induces locomotor dysfunction and development of neurodegenerative phenotypes in zebrafish. Neurosci Lett. 2020;716:134646. https://doi.org/10.1016/j.neulet.2019.134646
  50. Dauer W, Przedborski S. Parkinson's disease: mechanisms and models. Neuron. 2003;39:889-909. https://doi.org/10.1016/S0896-6273(03)00568-3
  51. Davis DJ, Bryda EC, Gillespie CH, Ericsson AC. Microbial modulation of behavior and stress responses in zebrafish larvae. Behav Brain Res. 2016;311:219-27. https://doi.org/10.1016/j.bbr.2016.05.040
  52. de Abreu MS, Giacomini ACVV, Sysoev M, Demin KA, Alekseeva PA, Spagnoli ST, et al. Modeling gut-brain interactions in zebrafish. Brain Res Bull. 2019;148:55-62. https://doi.org/10.1016/j.brainresbull.2019.03.003
  53. Dehal P, Boore JL. Two rounds of whole genome duplication in the ancestral vertebrate. PLOS Biol. 2005;3:e314. https://doi.org/10.1371/journal.pbio.0030314
  54. Dias V, Junn E, Mouradian MM. The role of oxidative stress in Parkinson's disease. J Parkinsons Dis. 2013;3:461-91. https://doi.org/10.3233/JPD-130230
  55. Dickson DW, Lin W, Liu WK, Yen SH. Multiple system atrophy: a sporadic synucleinopathy. Brain Pathol. 1999;9:721-32. https://doi.org/10.1111/j.1750-3639.1999.tb00553.x
  56. Ding Y, Lei L, Lai C, Tang Z. Tau protein and zebrafish models for tau-induced neurodegeneration. J Alzheimers Dis. 2019;69:339-53. https://doi.org/10.3233/JAD-180917
  57. Dodiya HB, Forsyth CB, Voigt RM, Engen PA, Patel J, Shaikh M, et al. Chronic stress-induced gut dysfunction exacerbates Parkinson's disease phenotype and pathology in a rotenone-induced mouse model of Parkinson's disease. Neurobiol Dis. 2020;135:104352. https://doi.org/10.1016/j.nbd.2018.12.012
  58. Du Y, Guo Q, Shan M, Wu Y, Huang S, Zhao H, et al. Spatial and temporal distribution of dopaminergic neurons during development in zebrafish. Front Neuroanat. 2016;10:115.
  59. Dukes AA, Bai Q, Van Laar VS, Zhou Y, Ilin V, David CN, et al. Live imaging of mitochondrial dynamics in CNS dopaminergic neurons in vivo demonstrates early reversal of mitochondrial transport following MPP+ exposure. Neurobiol Dis. 2016;95:238-49. https://doi.org/10.1016/j.nbd.2016.07.020
  60. Elgar G. Plenty more fish in the sea: comparative and functional genomics using teleost models. Brief Funct Genomic Proteomic. 2004;3:15-25. https://doi.org/10.1093/bfgp/3.1.15
  61. Engelender S, Kaminsky Z, Guo X, Sharp AH, Amaravi RK, Kleiderlein JJ, et al. Synphilin-1 associates with α-synuclein and promotes the formation of cytosolic inclusions. Nat Genet. 1999;22:110-4. https://doi.org/10.1038/8820
  62. Engelender S, Wanner T, Kleiderlein JJ, Wakabayashi K, Tsuji S, Takahashi H, et al. Organization of the human synphilin-1 gene, a candidate for Parkinson's disease. Mamm Genome. 2000;11:763-6. https://doi.org/10.1007/s003350010123
  63. Engeszer RE, Patterson LB, Rao AA, Parichy DM. Zebrafish in the wild: a review of natural history and new notes from the field. Zebrafish. 2007;4:21-40. https://doi.org/10.1089/zeb.2006.9997
  64. Fan Y, Limprasert P, Murray IVJ, Smith AC, Lee VMY, Trojanowski JQ, et al. β-Synuclein modulates α-synuclein neurotoxicity by reducing α-synuclein protein expression. Hum Mol Genet. 2006;15:3002-11. https://doi.org/10.1093/hmg/ddl242
  65. Flinn L, Bretaud S, Lo C, Ingham PW, Bandmann O. Zebrafish as a new animal model for movement disorders. J Neurochem. 2008;106:1991-7. https://doi.org/10.1111/j.1471-4159.2008.05463.x
  66. Fontana BD, Mezzomo NJ, Kalueff AV, Rosemberg DB. The developing utility of zebrafish models of neurological and neuropsychiatric disorders: a critical review. Exp Neurol. 2018;299:157-71. https://doi.org/10.1016/j.expneurol.2017.10.004
  67. Ganz J. Gut feelings: studying enteric nervous system development, function, and disease in the zebrafish model system. Dev Dyn. 2018;247:268-78. https://doi.org/10.1002/dvdy.24597
  68. George JM. The synucleins. Genome Biol. 2001;3:reviews3002.1-3002.6. https://doi.org/10.1186/gb-2001-3-1-reviews3002
  69. Godoy R, Hua K, Kalyn M, Cusson VM, Anisman H, Ekker M. Dopaminergic neurons regenerate following chemogenetic ablation in the olfactory bulb of adult Zebrafish (Danio rerio). Sci Rep. 2020;10:12825. https://doi.org/10.1038/s41598-020-69734-0
  70. Goedert M. Alpha-synuclein and neurodegenerative diseases. Nat Rev Neurosci. 2001;2:492-501. https://doi.org/10.1038/35081564
  71. Goedert M, Spillantini MG. Synucleinopathies and tauopathies. In: Brady ST, Siegel GJ, Albers RW, editors. Basic neurochemistry. Amsterdam: Elsevier; 2012. p. 829-43.
  72. Goedert M, Masuda-Suzukake M, Falcon B. Like prions: the propagation of aggregated tau and α-synuclein in neurodegeneration. Brain. 2016;140:266-78. https://doi.org/10.1093/brain/aww230
  73. Gorostidi A, Bergareche A, Ruiz-Martinez J, Marti-Masso JF, Cruz M, Varghese S, et al. α-Synuclein levels in blood plasma from LRRK2 mutation carriers. PLOS ONE. 2012;7:e52312. https://doi.org/10.1371/journal.pone.0052312
  74. Greggio E, Cookson MR. Leucine-rich repeat kinase 2 mutations and Parkinson's disease: three questions. ASN Neuro. 2009;1:AN20090007. https://doi.org/10.1042/AN20090007
  75. Gregory A, Kurian MA, Maher ER, Hogarth P, Hayflick SJ. PLA2G6-associated neurodegeneration. Seattle, WA: University of Washington; 2017.
  76. Haikal C, Chen QQ, Li JY. Microbiome changes: an indicator of Parkinson's disease? Transl Neurodegener. 2019;8:38. https://doi.org/10.1186/s40035-019-0175-7
  77. Hashimoto M, Rockenstein E, Mante M, Mallory M, Masliah E. β-Synuclein inhibits α-synuclein aggregation: a possible role as an anti-parkinsonian factor. Neuron. 2001;32:213-23. https://doi.org/10.1016/S0896-6273(01)00462-7
  78. Hashimoto M, Spada ARL. β-Synuclein in the pathogenesis of Parkinson's disease and related α-synucleinopathies: emerging roles and new directions. Future Neurol. 2012;7:155-63. https://doi.org/10.2217/fnl.12.5
  79. Hawkes CH, Del Tredici K, Braak H. Parkinson's disease: a dual-hit hypothesis. Neuropathol Appl Neurobiol. 2007;33:599-614. https://doi.org/10.1111/j.1365-2990.2007.00874.x
  80. Hoenen C, Gustin A, Birck C, Kirchmeyer M, Beaume N, Felten P, et al. Alpha-synuclein proteins promote pro-inflammatory cascades in microglia: stronger effects of the A53T mutant. PLOS ONE. 2016;11:e0162717. https://doi.org/10.1371/journal.pone.0162717
  81. Hoppe SO, Uzunoglu G, Nussbaum-Krammer C. α-Synuclein strains: does amyloid conformation explain the heterogeneity of synucleinopathies? Biomolecules. 2021;11:931. https://doi.org/10.3390/biom11070931
  82. Houlden H, Singleton AB. The genetics and neuropathology of Parkinson's disease. Acta Neuropathol. 2012;124:325-38. https://doi.org/10.1007/s00401-012-1013-5
  83. Howe K, Clark MD, Torroja CF, Torrance J, Berthelot C, Muffato M, et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature. 2013;496(7446):498-503. https://doi.org/10.1038/nature12111
  84. Howe K. Chapter 31 - The zebrafish genome sequencing project: bioinformatics resources. In: Gerlai RT, editor. Behavioral and neural genetics of zebrafish. London: Academic Press; 2020. p. 551-62.
  85. Hruska KS, LaMarca ME, Scott CR, Sidransky E. Gaucher disease: mutation and polymorphism spectrum in the glucocerebrosidase gene (GBA). Hum Mutat. 2008;29:567-83. https://doi.org/10.1002/humu.20676
  86. Hu Q, Guo F, Zhao F, Fu Z. Effects of titanium dioxide nanoparticles exposure on Parkinsonism in zebrafish larvae and PC12. Chemosphere. 2017;173:373-9. https://doi.org/10.1016/j.chemosphere.2017.01.063
  87. Ingelsson M. Alpha-synuclein oligomers-neurotoxic molecules in Parkinson's disease and other lewy body disorders. Front Neurosci. 2016;10:408. https://doi.org/10.3389/fnins.2016.00408
  88. Inglis KJ, Chereau D, Brigham EF, Chiou SS, Schobel S, Frigon NL, et al. Polo-like kinase 2 (PLK2) phosphorylates α-synuclein at serine 129 in central nervous system. J Biol Chem. 2009;284:2598-602. https://doi.org/10.1074/jbc.C800206200
  89. Innos J, Hickey MA. Using rotenone to model Parkinson's disease in mice: a review of the role of pharmacokinetics. Chem Res Toxicol. 2021;34:1223-39. https://doi.org/10.1021/acs.chemrestox.0c00522
  90. Ishikawa-Ankerhold HC, Ankerhold R, Drummen GPC. Advanced fluorescence microscopy techniques-FRAP, FLIP, FLAP, FRET and FLIM. Molecules. 2012;17:4047-132. https://doi.org/10.3390/molecules17044047
  91. Jakes R, Spillantini MG, Goedert M. Identification of two distinct synucleins from human brain. FEBS Lett. 1994;345:27-32. https://doi.org/10.1016/0014-5793(94)00395-5
  92. Jiang W, Li J, Zhang Z, Wang H, Wang Z. Epigenetic upregulation of alpha-synuclein in the rats exposed to methamphetamine. Eur J Pharmacol. 2014;745:243-8. https://doi.org/10.1016/j.ejphar.2014.10.043
  93. Jo E, McLaurin J, Yip CM, St. George-Hyslop P, Fraser PE. alpha-Synuclein membrane interactions and lipid specificity. J Biol Chem. 2000;275:34328-34. https://doi.org/10.1074/jbc.M004345200
  94. Johnson ME, Bobrovskaya L. An update on the rotenone models of Parkinson's disease: their ability to reproduce the features of clinical disease and model gene-environment interactions. Neurotoxicology. 2015;46:101-16. https://doi.org/10.1016/j.neuro.2014.12.002
  95. Johnson ME, Stringer A, Bobrovskaya L. Rotenone induces gastrointestinal pathology and microbiota alterations in a rat model of Parkinson's disease. Neurotoxicology. 2018;65:174-85. https://doi.org/10.1016/j.neuro.2018.02.013
  96. Kalueff AV, Stewart AM, Gerlai R. Zebrafish as an emerging model for studying complex brain disorders. Trends Pharmacol Sci. 2014;35:63-75. https://doi.org/10.1016/j.tips.2013.12.002
  97. Kaur G, Behl T, Bungau S, Kumar A, Uddin MS, Mehta V, et al. Dysregulation of the gut-brain axis, dysbiosis and influence of numerous factors on gut microbiota associated Parkinson's disease. Curr Neuropharmacol. 2021;19:233-47. https://doi.org/10.2174/18756190MTA3fMTUq5
  98. Kaur U, Lee JC. Membrane interactions of α-synuclein probed by neutrons and photons. Acc Chem Res. 2021;54:302-10. https://doi.org/10.1021/acs.accounts.0c00453
  99. Keatinge M, Bui H, Menke A, Chen YC, Sokol AM, Bai Q, et al. Glucocerebrosidase 1 deficient Danio rerio mirror key pathological aspects of human Gaucher disease and provide evidence of early microglial activation preceding alpha-synuclein-independent neuronal cell death. Hum Mol Genet. 2015;24:6640-52. https://doi.org/10.1093/hmg/ddv369
  100. Keller JM, Keller ET. The use of mature zebrafish (Danio rerio) as a model for human aging and disease. In: Ram JL, Conn PM, editors. Conn's handbook of models for human aging. London: Academic Press; 2018. p. 351-9.
  101. Khotimah H, Ali M, Sumitro SB, Widodo MA. Decreasing α-synuclein aggregation by methanolic extract of Centella asiatica in zebrafish Parkinson's model. Asian Pac J Trop Biomed. 2015a;5:948-54. https://doi.org/10.1016/j.apjtb.2015.07.024
  102. Khotimah H, Sumitro SB, Widodo MA. Zebrafish Parkinson's model: rotenone decrease motility, dopamine, and increase α-synuclein aggregation and apoptosis of zebrafish brain. Int J Pharm Tech Res. 2015b;8:614-21.
  103. Kimmel CB. Genetics and early development of zebrafish. Trends Genet. 1989;5:283-8. https://doi.org/10.1016/0168-9525(89)90103-0
  104. Kimmel CB. Patterning the brain of the zebrafish embryo. Annnu Rev Neurosci. 1993;16:707-32. https://doi.org/10.1146/annurev.ne.16.030193.003423
  105. Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF. Stages of embryonic development of the zebrafish. Dev Dyn. 1995;203:253-310. https://doi.org/10.1002/aja.1002030302
  106. Koppel N, Maini Rekdal V, Balskus EP. Chemical transformation of xenobiotics by the human gut microbiota. Science. 2017;356:eaag2770. https://doi.org/10.1126/science.aag2770
  107. Kostyuk AI, Panova AS, Kokova AD, Kotova DA, Maltsev DI, Podgorny OV, et al. In vivo imaging with genetically encoded redox biosensors. Int J Mol Sci. 2020;21:8164. https://doi.org/10.3390/ijms21218164
  108. Kruger R, Kuhn W, Muller T, Woitalla D, Graeber M, Kosel S, et al. Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson's disease. Nat Genet. 1998;18:106-8. https://doi.org/10.1038/ng0298-106
  109. Kuil LE, Chauhan RK, Cheng WW, Hofstra RMW, Alves MM. Zebrafish: a model organism for studying enteric nervous system development and disease. Front Cell Dev Biol. 2021;8:629073. https://doi.org/10.3389/fcell.2020.629073
  110. Kumar A, Anuppalle M, Maddirevula S, Huh TL, Choe J, Rhee M. Peli1b governs the brain patterning via ERK signaling pathways in zebrafish embryos. Gene. 2019;694:1-6. https://doi.org/10.1016/j.gene.2018.12.078
  111. Kurian MA, Morgan NV, MacPherson L, Foster K, Peake D, Gupta R, et al. Phenotypic spectrum of neurodegeneration associated with mutations in the PLA2G6 gene (PLAN). Neurology. 2008;70:1623-9. https://doi.org/10.1212/01.wnl.0000310986.48286.8e
  112. Lavedan C, Leroy E, Dehejia A, Buchholtz S, Dutra A, Nussbaum RL, et al. Identification, localization and characterization of the human γ-synuclein gene. Hum Genet. 1998;103:106-12. https://doi.org/10.1007/s004390050792
  113. Lee HJ, Kim C, Lee SJ. Alpha-synuclein stimulation of astrocytes: potential role for neuroinflammation and neuroprotection. Oxid Med Cell Longev. 2010;3:283-7. https://doi.org/10.4161/oxim.3.4.12809
  114. Lee JG, Cho HJ, Jeong YM, Lee JS. Genetic approaches using zebrafish to study the microbiota-gut-brain axis in neurological disorders. Cells. 2021;10:566. https://doi.org/10.3390/cells10030566
  115. Lee VMY, Trojanowski JQ. Progress from Alzheimer's tangles to pathological tau points towards more effective therapies now. J Alzheimers Dis. 2006;9(3 Suppl):257-62. https://doi.org/10.3233/JAD-2006-9S328
  116. Lehtonen S, Sonninen TM, Wojciechowski S, Goldsteins G, Koistinaho J. Dysfunction of cellular proteostasis in Parkinson's disease. Front Neurosci. 2019;13:457. https://doi.org/10.3389/fnins.2019.00457
  117. Lennaerts-Kats H, Ebenau A, Steppe M, van der Steen JT, Meinders MJ, Vissers K, et al. "How long can I carry on?" The need for palliative care in Parkinson's disease: a qualitative study from the perspective of bereaved family caregivers. J Parkinsons Dis. 2020;10:1631-42. https://doi.org/10.3233/JPD-191884
  118. Leong SL, Cappai R, Barnham KJ, Pham CLL. Modulation of alpha-synuclein aggregation by dopamine: a review. Neurochem Res. 2009;34:1838-46. https://doi.org/10.1007/s11064-009-9986-8
  119. Lesage S, Anheim M, Letournel F, Bousset L, Honore A, Rozas N, et al. G51D α-synuclein mutation causes a novel parkinsonian-pyramidal syndrome. Ann Neurol. 2013;73:459-71. https://doi.org/10.1002/ana.23894
  120. Li J, Uversky VN, Fink AL. Conformational behavior of human α-synuclein is modulated by familial Parkinson's disease point mutations A30P and A53T. Neurotoxicology. 2002;23:553-67. https://doi.org/10.1016/S0161-813X(02)00066-9
  121. Li N, Stewart T, Sheng L, Shi M, Cilento EM, Wu Y, et al. Immunoregulation of microglial polarization: an unrecognized physiological function of α-synuclein. J Neuroinflammation. 2020;17:272. https://doi.org/10.1186/s12974-020-01940-z
  122. Li X, Dang J, Li Y, Wang L, Li N, Liu K, et al. Developmental neurotoxicity fingerprint of silica nanoparticles at environmentally relevant level on larval zebrafish using a neurobehavioral-phenomics-based biological warning method. Sci Total Environ. 2021;752:141878. https://doi.org/10.1016/j.scitotenv.2020.141878
  123. Lingor P, Koch JC, Tonges L, Bahr M. Axonal degeneration as a therapeutic target in the CNS. Cell Tissue Res. 2012;349:289-311. https://doi.org/10.1007/s00441-012-1362-3
  124. Linnertz C, Saucier L, Ge D, Cronin KD, Burke JR, Browndyke JN, et al. Genetic regulation of α-synuclein mRNA expression in various human brain tissues. PLOS ONE. 2009;4:e7480. https://doi.org/10.1371/journal.pone.0007480
  125. Lionnet A, Leclair-Visonneau L, Neunlist M, Murayama S, Takao M, Adler CH, et al. Does Parkinson's disease start in the gut? Acta Neuropathol. 2018;135:1-12. https://doi.org/10.1007/s00401-017-1777-8
  126. Liu J, Li T, Thomas JM, Pei Z, Jiang H, Engelender S, et al. Synphilin-1 attenuates mutant LRRK2-induced neurodegeneration in Parkinson's disease models. Hum Mol Genet. 2016;25:672-80. https://doi.org/10.1093/hmg/ddv504
  127. Liu J, Xu F, Nie Z, Shao L. Gut microbiota approach-a new strategy to treat Parkinson's disease. Front Cell Infect Microbiol. 2020;10:570658. https://doi.org/10.3389/fcimb.2020.570658
  128. Lu J, Peatman E, Tang H, Lewis J, Liu Z. Profiling of gene duplication patterns of sequenced teleost genomes: evidence for rapid lineage-specific genome expansion mediated by recent tandem duplications. BMC Genomics. 2012;13:246. https://doi.org/10.1186/1471-2164-13-246
  129. Luke GA, Ryan MD. Using the 2A protein coexpression system: multicistronic 2A vectors expressing gene(s) of interest and reporter proteins. In: Damoiseaux R, Hasson S, editors. Reporter gene assays: methods and protocols. New York, NY: Humana Press/Springer; 2018. p. 31-48.
  130. Lulla A, Barnhill L, Bitan G, Ivanova MI, Nguyen B, O'Donnell K, et al. Neurotoxicity of the Parkinson disease-associated pesticide ziram is synuclein-dependent in zebrafish embryos. Environ Health Perspect. 2016;124:1766-75. https://doi.org/10.1289/EHP141
  131. Luo C, Rajput AH, Akhtar S, Rajput A. α-Synuclein and tyrosine hydroxylase expression in acute rotenone toxicity. Int J Mol Med. 2007;19:517-21.
  132. Lv DJ, Li LX, Chen J, Wei SZ, Wang F, Hu H, et al. Sleep deprivation caused a memory defects and emotional changes in a rotenone-based zebrafish model of Parkinson's disease. Behav Brain Res. 2019;372:112031. https://doi.org/10.1016/j.bbr.2019.112031
  133. Ma PM. Catecholaminergic systems in the zebrafish. IV. Organization and projection pattern of dopaminergic neurons in the diencephalon. J Comp Neurol. 2003;460:13-37. https://doi.org/10.1002/cne.10544
  134. Ma Q, Xing C, Long W, Wang HY, Liu Q, Wang RF. Impact of microbiota on central nervous system and neurological diseases: the gut-brain axis. J Neuroinflammation. 2019;16:53. https://doi.org/10.1186/s12974-019-1434-3
  135. Madden JC, Hewitt M, Przybylak K, Vandebriel RJ, Piersma AH, Cronin MTD. Strategies for the optimisation of in vivo experiments in accordance with the 3Rs philosophy. Regul Toxicol Pharmacol. 2012;63:140-54. https://doi.org/10.1016/j.yrtph.2012.03.010
  136. Makhija DT, Jagtap AG. Studies on sensitivity of zebrafish as a model organism for Parkinson's disease: comparison with rat model. J Pharmacol Pharmacother. 2014;5:39-46. https://doi.org/10.4103/0976-500X.124422
  137. Maroteaux L, Campanelli JT, Scheller RH. Synuclein: a neuron-specific protein localized to the nucleus and presynaptic nerve terminal. J Neurosci. 1988;8:2804-15. https://doi.org/10.1523/JNEUROSCI.08-08-02804.1988
  138. Martins T, Valentim AM, Pereira N, Antunes LM. Anaesthesia and analgesia in laboratory adult zebrafish: a question of refinement. Lab Anim. 2016;50:476-88. https://doi.org/10.1177/0023677216670686
  139. Marx FP, Holzmann C, Strauss KM, Li L, Eberhardt O, Gerhardt E, et al. Identification and functional characterization of a novel R621C mutation in the synphilin-1 gene in Parkinson's disease. Hum Mol Genet. 2003;12:1223-31. https://doi.org/10.1093/hmg/ddg134
  140. Matsui H, Matsui N. Cerebrospinal fluid injection into adult zebrafish for disease research. J Neural Transm. 2017;124:1627-33. https://doi.org/10.1007/s00702-017-1787-7
  141. Matsui H, Sugie A. An optimized method for counting dopaminergic neurons in zebrafish. PLOS ONE. 2017;12:e0184363. https://doi.org/10.1371/journal.pone.0184363
  142. Maximino C, de Brito TM, da Silva Batista AW, Herculano AM, Morato S, Gouveia A Jr. Measuring anxiety in zebrafish: a critical review. Behav Brain Res. 2010;214:157-71. https://doi.org/10.1016/j.bbr.2010.05.031
  143. Mbefo MK, Paleologou KE, Boucharaba A, Oueslati A, Schell H, Fournier M, et al. Phosphorylation of synucleins by members of the Polo-like kinase family. J Biol Chem. 2010;285:2807-22. https://doi.org/10.1074/jbc.M109.081950
  144. Mehra S, Sahay S, Maji SK. α-Synuclein misfolding and aggregation: implications in Parkinson's disease pathogenesis. Biochim Biophys Acta Proteins Proteomics. 2019;1867:890-908. https://doi.org/10.1016/j.bbapap.2019.03.001
  145. Melki R. Role of different alpha-synuclein strains in synucleinopathies, similarities with other neurodegenerative diseases. J Parkinsons Dis. 2015;5:217-27. https://doi.org/10.3233/JPD-150543
  146. Milanese C, Sager JJ, Bai Q, Farrell TC, Cannon JR, Greenamyre JT, et al. Hypokinesia and reduced dopamine levels in zebrafish lacking β- and γ1-synucleins. J Biol Chem. 2012;287:2971-83. https://doi.org/10.1074/jbc.M111.308312
  147. Milanese C, Cerri S, Ulusoy A, Gornati SV, Plat A, Gabriels S, et al. Activation of the DNA damage response in vivo in synucleinopathy models of Parkinson's disease. Cell Death Dis. 2018;9:818. https://doi.org/10.1038/s41419-018-0848-7
  148. Mohanta L, Das BC, Patri M. Microbial communities modulating brain functioning and behaviors in zebrafish: a mechanistic approach. Microb Pathog. 2020;145:104251. https://doi.org/10.1016/j.micpath.2020.104251
  149. Moulton JD. Using morpholinos to control gene expression. Curr Protoc Nucleic Acid Chem. 2017;68:4.30.1-4.30.29. https://doi.org/10.1002/cpnc.21
  150. Moussavi Nik SH, Newman M, Ganesan S, Chen M, Martins R, Verdile G, et al. Hypoxia alters expression of zebrafish microtubule-associated protein tau (mapta, maptb) gene transcripts. BMC Res Notes. 2014;7:767. https://doi.org/10.1186/1756-0500-7-767
  151. Mudo G, Makela J, Di Liberto V, Tselykh TV, Olivieri M, Piepponen P, et al. Transgenic expression and activation of PGC-1α protect dopaminergic neurons in the MPTP mouse model of Parkinson's disease. Cell Mol Life Sci. 2012;69:1153-65. https://doi.org/10.1007/s00018-011-0850-z
  152. Musgrove REJ, King AE, Dickson TC. Neuroprotective upregulation of endogenous alpha-synuclein precedes ubiquitination in cultured dopaminergic neurons. Neurotox Res. 2011;19:592-602. https://doi.org/10.1007/s12640-010-9207-x
  153. Musgrove RE, Horne J, Wilson R, King AE, Edwards LM, Dickson TC. The metabolomics of alpha-synuclein (SNCA) gene deletion and mutation in mouse brain. Metabolomics. 2014;10:114-22. https://doi.org/10.1007/s11306-013-0561-6
  154. Najib NHM, Nies YH, Abd Halim SAS, Yahaya MF, Das S, Lim WL, et al. Modeling Parkinson's disease in zebrafish. CNS Neurol Disord Drug Targets. 2020;19:386-99. https://doi.org/10.2174/1871527319666200708124117
  155. Ng CH, Basil AH, Hang L, Tan R, Goh KL, O'Neill S, et al. Genetic or pharmacological activation of the Drosophila PGC-1α ortholog spargel rescues the disease phenotypes of genetic models of Parkinson's disease. Neurobiol Aging. 2017;55:33-7. https://doi.org/10.1016/j.neurobiolaging.2017.03.017
  156. Nietzel T, Elsasser M, Ruberti C, Steinbeck J, Ugalde JM, Fuchs P, et al. The fluorescent protein sensor roGFP2-Orp1 monitors in vivo H2O2 and thiol redox integration and elucidates intracellular H2O2 dynamics during elicitor-induced oxidative burst in Arabidopsis. New Phytol. 2019;221:1649-64. https://doi.org/10.1111/nph.15550
  157. NLM. SNCA - synuclein alpha. [Internet]. 2017 [cited 2021 Jun 21]. https://www.ncbi.nlm.nih.gov/kis/ortholog/6622/?scope=7776
  158. Northam C, LeMoine CMR. Metabolic regulation by the PGC1α and PGC-1β coactivators in larval zebrafish (Danio rerio). Comp Biochem Physiol A Mol Integr Physiol. 2019;234:60-7. https://doi.org/10.1016/j.cbpa.2019.04.011
  159. Nuytemans K, Theuns J, Cruts M, Van Broeckhoven C. Genetic etiology of Parkinson disease associated with mutations in the SNCA, PARK2, PINK1, PARK7, and LRRK2 genes: a mutation update. Hum Mutat. 2010;31:763-80. https://doi.org/10.1002/humu.21277
  160. O'Donnell KC, Lulla A, Stahl MC, Wheat ND, Bronstein JM, Sagasti A. Axon degeneration and PGC-1α-mediated protection in a zebrafish model of α-synuclein toxicity. Dis Model Mech. 2014;7:571-82. https://doi.org/10.1242/dmm.013185
  161. O'Hara DM, Pawar G, Kalia SK, Kalia LV. LRRK2 and α-synuclein: distinct or synergistic players in Parkinson's disease? Front Neurosci. 2020;14:577. https://doi.org/10.3389/fnins.2020.00577
  162. Ohnesorge N, Heinl C, Lewejohann L. Current methods to investigate nociception and pain in zebrafish. Front Neurosci. 2021;15:632634. https://doi.org/10.3389/fnins.2021.632634
  163. Ohno M, Nikaido M, Horiuchi N, Kawakami K, Hatta K. The enteric nervous system in zebrafish larvae can regenerate via migration into the ablated area and proliferation of neural crest-derived cells. Development. 2021;148:dev195339.
  164. Olsson C, Holmberg A, Holmgren S. Development of enteric and vagal innervation of the zebrafish (Danio rerio) gut. J Comp Neurol. 2008;508:756-70. https://doi.org/10.1002/cne.21705
  165. Ostrerova N, Petrucelli L, Farrer M, Mehta N, Choi P, Hardy J, et al. α-Synuclein shares physical and functional homology with 14-3-3 proteins. J Neurosci. 1999;19:5782-91. https://doi.org/10.1523/jneurosci.19-14-05782.1999
  166. Oueslati A, Schneider BL, Aebischer P, Lashuel HA. Polo-like kinase 2 regulates selective autophagic α-synuclein clearance and suppresses its toxicity in vivo. Proc Natl Acad Sci USA. 2013;110:E3945-54.
  167. Oueslati A, Ximerakis M, Vekrellis K. Protein transmission, seeding and degradation: key steps for α-synuclein prion-like propagation. Exp Neurobiol. 2014;23:324-36. https://doi.org/10.5607/en.2014.23.4.324
  168. Parichy DM, Elizondo MR, Mills MG, Gordon TN, Engeszer RE. Normal table of postembryonic zebrafish development: staging by externally visible anatomy of the living fish. Dev Dyn. 2009;238:2975-3015. https://doi.org/10.1002/dvdy.22113
  169. Park JY, Lansbury PT Jr. β-Synuclein inhibits formation of α-synuclein protofibrils: a possible therapeutic strategy against Parkinson's disease. Biochemistry. 2003;42:3696-700. https://doi.org/10.1021/bi020604a
  170. Parkinson J. An essay on the shaking palsy. 1817. J Neuropsychiatry Clin Neurosci. 2002;14:223-36. https://doi.org/10.1176/appi.neuropsych.14.2.223
  171. Perez RG, Waymire JC, Lin E, Liu JJ, Guo F, Zigmond MJ. A role for alpha-synuclein in the regulation of dopamine biosynthesis. J Neurosci. 2002;22:3090-9. https://doi.org/10.1523/jneurosci.22-08-03090.2002
  172. Periquet M, Fulga T, Myllykangas L, Schlossmacher MG, Feany MB. Aggregated α-synuclein mediates dopaminergic neurotoxicity in vivo. J Neurosci. 2007;27:3338-46. https://doi.org/10.1523/JNEUROSCI.0285-07.2007
  173. Peters OM, Shelkovnikova T, Highley JR, Cooper-Knock J, Hortobagyi T, Troakes C, et al. Gamma-synuclein pathology in amyotrophic lateral sclerosis. Ann Clin Transl Neurol. 2015;2:29-37. https://doi.org/10.1002/acn3.143
  174. Pham LN, Kanther M, Semova I, Rawls JF. Methods for generating and colonizing gnotobiotic zebrafish. Nat Protoc. 2008;3:1862-75. https://doi.org/10.1038/nprot.2008.186
  175. Pietrucci D, Teofani A, Unida V, Cerroni R, Biocca S, Stefani A, et al. Can gut microbiota be a good predictor for Parkinson's disease? A machine learning approach. Brain Sci. 2020;10:242. https://doi.org/10.3390/brainsci10040242
  176. Piovesan A, Antonaros F, Vitale L, Strippoli P, Pelleri MC, Caracausi M. Human protein-coding genes and gene feature statistics in 2019. BMC Res Notes. 2019;12:315. https://doi.org/10.1186/s13104-019-4343-8
  177. Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, et al. Mutation in the alpha-synuclein gene identified in families with Parkinson's disease. Science. 1997;276:2045-7. https://doi.org/10.1126/science.276.5321.2045
  178. Prabhudesai S, Sinha S, Attar A, Kotagiri A, Fitzmaurice AG, Lakshmanan R, et al. A novel "molecular tweezer" inhibitor of α-synuclein neurotoxicity in vitro and in vivo. Neurotherapeutics. 2012;9:464-76. https://doi.org/10.1007/s13311-012-0105-1
  179. Prabhudesai S, Bensabeur FZ, Abdullah R, Basak I, Baez S, Alves G, et al. LRRK2 knockdown in zebrafish causes developmental defects, neuronal loss, and synuclein aggregation. J Neurosci Res. 2016;94:717-35. https://doi.org/10.1002/jnr.23754
  180. Proukakis C, Dudzik CG, Brier T, MacKay DS, Cooper JM, Millhauser GL, et al. A novel α-synuclein missense mutation in Parkinson disease. Neurology. 2013;80:1062-4. https://doi.org/10.1212/WNL.0b013e31828727ba
  181. Provost E, Rhee J, Leach SD. Viral 2A peptides allow expression of multiple proteins from a single ORF in transgenic zebrafish embryos. Genesis. 2007;45:625-9. https://doi.org/10.1002/dvg.20338
  182. Punsoni M, Friedman JH, Resnick M, Donahue JE, Yang DF, Stopa EG. Enteric pathologic manifestations of alpha-synucleinopathies. Appl Immunohistochem Mol Morphol. 2019;27:543-8. https://doi.org/10.1097/PAI.0000000000000613
  183. Quilty MC, King AE, Gai WP, Pountney DL, West AK, Vickers JC, et al. Alpha-synuclein is upregulated in neurones in response to chronic oxidative stress and is associated with neuroprotection. Exp Neurol. 2006;199:249-56. https://doi.org/10.1016/j.expneurol.2005.10.018
  184. Ravi V, Venkatesh B. The divergent genomes of teleosts. Annnu Rev Anim Biosci. 2018;6:47-68. https://doi.org/10.1146/annurev-animal-030117-014821
  185. Recchia A, Debetto P, Negro A, Guidolin D, Skaper SD, Giusti P. Alpha-synuclein and Parkinson's disease. FASEB J. 2004;18:617-26. https://doi.org/10.1096/fj.03-0338rev
  186. Rey NL, George S, Brundin P. Review: spreading the word: precise animal models and validated methods are vital when evaluating prion-like behaviour of alpha-synuclein. Neuropathol Appl Neurobiol. 2016;42:51-76. https://doi.org/10.1111/nan.12299
  187. Rietdijk CD, Perez-Pardo P, Garssen J, van Wezel RJA, Kraneveld AD. Exploring Braak's Hypothesis of Parkinson's disease. Front Neurol. 2017;8:37.
  188. Rodriguez L, Marano MM, Tandon A. Import and export of misfolded α-synuclein. Front Neurosci. 2018;12:344. https://doi.org/10.3389/fnins.2018.00344
  189. Rolig AS, Mittge EK, Ganz J, Troll JV, Melancon E, Wiles TJ, et al. The enteric nervous system promotes intestinal health by constraining microbiota composition. PLOS Biol. 2017;15:e2000689. https://doi.org/10.1371/journal.pbio.2000689
  190. Rotshenker S. Wallerian degeneration: the innate-immune response to traumatic nerve injury. J Neuroinflammation. 2011;8:109. https://doi.org/10.1186/1742-2094-8-109
  191. Sager JJ, Bai Q, Burton EA. Transgenic zebrafish models of neurodegenerative diseases. Brain Struct Funct. 2010;214:285-302. https://doi.org/10.1007/s00429-009-0237-1
  192. Sampson TR, Debelius JW, Thron T, Janssen S, Shastri GG, Ilhan ZE, et al. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson's disease. Cell. 2016;167:1469-80.e12. https://doi.org/10.1016/j.cell.2016.11.018
  193. Sanchez E, Azcona LJ, Paisan-Ruiz C. Pla2g6 deficiency in zebrafish leads to dopaminergic cell death, axonal degeneration, increased beta-synuclein expression, and defects in brain functions and pathways. Mol Neurobiol. 2018;55:6734-54. https://doi.org/10.1007/s12035-017-0846-2
  194. Sargent D, Betemps D, Drouyer M, Verchere J, Gaillard D, Arsac JN, et al. Investigating the neuroprotective effect of AAV-mediated β-synuclein overexpression in a transgenic model of synucleinopathy. Sci Rep. 2018;8:17563. https://doi.org/10.1038/s41598-018-35825-2
  195. Savica R, Boeve BF, Mielke MM. When do α-synucleinopathies start? An epidemiological timeline: a review. JAMA Neurol. 2018;75:503-9. https://doi.org/10.1001/jamaneurol.2017.4243
  196. Sen S, West AB. The therapeutic potential of LRRK2 and α-synuclein in Parkinson's disease. Antioxid Redox Signal. 2009;11:2167-87. https://doi.org/10.1089/ars.2009.2430
  197. Senior SL, Ninkina N, Deacon R, Bannerman D, Buchman VL, Cragg SJ, et al. Increased striatal dopamine release and hyperdopaminergic-like behaviour in mice lacking both alpha-synuclein and gamma-synuclein. Eur J Neurosci. 2008;27:947-57. https://doi.org/10.1111/j.1460-9568.2008.06055.x
  198. Shaafi S, Najmi S, Aliasgharpour H, Mahmoudi J, Sadigh-Etemad S, Farhoudi M, et al. The efficacy of the ketogenic diet on motor functions in Parkinson's disease: a rat model. Iran J Neurol. 2016;15:63-9.
  199. Shaltiel-Karyo R, Frenkel-Pinter M, Egoz-Matia N, Frydman-Marom A, Shalev DE, Segal D, et al. Inhibiting α-synuclein oligomerization by stable cell-penetrating β-synuclein fragments recovers phenotype of Parkinson's disease model flies. PLOS ONE. 2010;5:e13863. https://doi.org/10.1371/journal.pone.0013863
  200. Shen T, Yue Y, He T, Huang C, Qu B, Lv W, et al. The association between the gut microbiota and Parkinson's disease, a meta-analysis. Front Aging Neurosci. 2021;13:636545. https://doi.org/10.3389/fnagi.2021.636545
  201. Shepherd I, Eisen J. Development of the zebrafish enteric nervous system. Methods Cell Biol. 2011;101:143-60. https://doi.org/10.1016/B978-0-12-387036-0.00006-2
  202. Shi L, Huang C, Luo Q, Xia Y, Liu H, Li L, et al. Pilot study: molecular risk factors for diagnosing sporadic Parkinson's disease based on gene expression in blood in MPTP-induced rhesus monkeys. Oncotarget. 2017;8:105606-14. https://doi.org/10.18632/oncotarget.22348
  203. Shishido T, Nagano Y, Araki M, Kurashige T, Obayashi H, Nakamura T, et al. Synphilin-1 has neuroprotective effects on MPP+-induced Parkinson's disease model cells by inhibiting ROS production and apoptosis. Neurosci Lett. 2019;690:145-50. https://doi.org/10.1016/j.neulet.2018.10.020
  204. Siddiqui IJ, Pervaiz N, Abbasi AA. The Parkinson disease gene SNCA: evolutionary and structural insights with pathological implication. Sci Rep. 2016;6:24475. https://doi.org/10.1038/srep24475
  205. Slijkerman R, Goloborodko A, Broekman S, de Vrieze E, Hetterschijt L, Peters T, et al. Poor splice-site recognition in a humanized zebrafish knockin model for the recurrent deep-intronic c.7595-2144A>G mutation in USH2A. Zebrafish. 2018;15:597-609. https://doi.org/10.1089/zeb.2018.1613
  206. Smith WW, Liu Z, Liang Y, Masuda N, Swing DA, Jenkins NA, et al. Synphilin-1 attenuates neuronal degeneration in the A53T alpha-synuclein transgenic mouse model. Hum Mol Genet. 2010;19:2087-98. https://doi.org/10.1093/hmg/ddq086
  207. Specht CG, Schoepfer R. Deletion of the alpha-synuclein locus in a subpopulation of C57BL/6J inbred mice. BMC Neurosci. 2001;2:11. https://doi.org/10.1186/1471-2202-2-11
  208. Spillantini MG, Divane A, Goedert M. Assignment of human alpha-synuclein (SNCA) and beta-synuclein (SNCB) genes to chromosomes 4q21 and 5q35. Genomics. 1995;27:379-81. https://doi.org/10.1006/geno.1995.1063
  209. Spillantini MG, Schmidt ML, Lee VMY, Trojanowski JQ, Jakes R, Goedert M. α-synuclein in Lewy bodies. Nature. 1997;388:839-40. https://doi.org/10.1038/42166
  210. Stefanis L. α-Synuclein in Parkinson's disease. Cold Spring Harb Perspect Med. 2012;2:a009399. https://doi.org/10.1101/cshperspect.a009399
  211. Stewart AM, Braubach O, Spitsbergen J, Gerlai R, Kalueff AV. Zebrafish models for translational neuroscience research: from tank to bedside. Trends Neurosci. 2014;37:264-78. https://doi.org/10.1016/j.tins.2014.02.011
  212. Strahle U, Scholz S, Geisler R, Greiner P, Hollert H, Rastegar S, et al. Zebrafish embryos as an alternative to animal experiments-a commentary on the definition of the onset of protected life stages in animal welfare regulations. Reprod Toxicol. 2012;33:128-32. https://doi.org/10.1016/j.reprotox.2011.06.121
  213. Sun Z, Gitler AD. Discovery and characterization of three novel synuclein genes in zebrafish. Dev Dyn. 2008;237:2490-5. https://doi.org/10.1002/dvdy.21569
  214. Tagliaferro P, Burke RE. Retrograde axonal degeneration in Parkinson disease. J Parkinsons Dis. 2016;6:1-15. https://doi.org/10.3233/JPD-150769
  215. Tanaka M, Kim YM, Lee G, Junn E, Iwatsubo T, Mouradian MM. Aggresomes formed by α-synuclein and synphilin-1 are cytoprotective. J Biol Chem. 2004;279:4625-31. https://doi.org/10.1074/jbc.M310994200
  216. Tannenbaum J, Bennett BT. Russell and Burch's 3Rs then and now: the need for clarity in definition and purpose. J Am Assoc Lab Anim Sci. 2015;54:120-32.
  217. Tanner CM, Kamel F, Ross GW, Hoppin JA, Goldman SM, Korell M, et al. Rotenone, paraquat, and Parkinson's disease. Environ Health Perspect. 2011;119:866-72. https://doi.org/10.1289/ehp.1002839
  218. Taymans JM, Cookson MR. Mechanisms in dominant parkinsonism: the toxic triangle of LRRK2, α-synuclein, and tau. BioEssays. 2010;32:227-35. https://doi.org/10.1002/bies.200900163
  219. Thawkar BS, Kaur G. Zebrafish as a promising tool for modeling neurotoxin-induced Alzheimer's disease. Neurotox Res. 2021;39:949-65. https://doi.org/10.1007/s12640-021-00343-z
  220. Toni M, Cioni C. Fish synucleins: an update. Mar Drugs. 2015;13:6665-86. https://doi.org/10.3390/md13116665
  221. Touchman JW, Dehejia A, Chiba-Falek O, Cabin DE, Schwartz JR, Orrison BM, et al. Human and mouse alpha-synuclein genes: comparative genomic sequence analysis and identification of a novel gene regulatory element. Genome Res. 2001;11:78-86. https://doi.org/10.1101/gr.165801
  222. Tyson T, Steiner JA, Brundin P. Sorting out release, uptake and processing of alpha-synuclein during prion-like spread of pathology. J Neurochem. 2016;139:275-89. https://doi.org/10.1111/jnc.13449
  223. Uemura O, Okada Y, Ando H, Guedj M, Higashijima S, Shimazaki T, et al. Comparative functional genomics revealed conservation and diversification of three enhancers of the isl1 gene for motor and sensory neuron-specific expression. Dev Biol. 2005;278:587-606. https://doi.org/10.1016/j.ydbio.2004.11.031
  224. Ugalde CL, Finkelstein DI, Lawson VA, Hill AF. Pathogenic mechanisms of prion protein, amyloid-β and α-synuclein misfolding: the prion concept and neurotoxicity of protein oligomers. J Neurochem. 2016;139:162-80. https://doi.org/10.1111/jnc.13772
  225. Unal I, Ustundag UV, Ates PS, Egilmezer G, Alturfan AA, Yigitbasi T, et al. Rotenone impairs oxidant/antioxidant balance both in brain and intestines in zebrafish. Int J Neurosci. 2019;129:363-8. https://doi.org/10.1080/00207454.2018.1538141
  226. Usmani SM, Mempel TR. Chapter 10 - Intravital microscopy. In: Ross BD, Gambhir SS, editors. Molecular imaging: principles and practice Volume 2. London: Academic Press; 2021. p. 167-92.
  227. Vaccaro R, Toni M, Casini A, Vivacqua G, Yu S, D'este L, et al. Localization of α-synuclein in teleost central nervous system: immunohistochemical and Western blot evidence by 3D5 monoclonal antibody in the common carp, Cyprinus carpio. J Comp Neurol. 2015;523:1095-124. https://doi.org/10.1002/cne.23722
  228. Van Den Berge N, Ulusoy A. Animal models of brainfirst and body-first Parkinson's disease. Neurobiol Dis. 2022;163:105599. https://doi.org/10.1016/j.nbd.2021.105599
  229. van Ham TJ, Brady CA, Kalicharan RD, Oosterhof N, Kuipers J, Veenstra-Algra A, et al. Intravital correlated microscopy reveals differential macrophage and microglial dynamics during resolution of neuroinflammation. Dis Models Mech. 2014;7:857-69. https://doi.org/10.1242/dmm.014886
  230. Van Laar VS, Chen J, Zharikov AD, Bai Q, Di Maio R, Dukes AA, et al. α-Synuclein amplifies cytoplasmic peroxide flux and oxidative stress provoked by mitochondrial inhibitors in CNS dopaminergic neurons in vivo. Redox Biol. 2020;37:101695. https://doi.org/10.1016/j.redox.2020.101695
  231. Varga M. The doctor of delayed publications: the remarkable life of George Streisinger (1927-1984). Zebrafish. 2018;15:314-9. https://doi.org/10.1089/zeb.2017.1531
  232. Vargas KJ, Colosi PL, Girardi E, Park JM, Chandra SS. α-Synuclein facilitates clathrin assembly in synaptic vesicle endocytosis [Internal]. bioRxiv. 2021 [cited 2022 Jan 10]. https://doi.org/10.1101/2020.04.29.069344
  233. Hernandez-Vargas RH, Fonseca-Ornelas L, Lopez-Gonzalez I, Riesgo-Escovar J, Zurita M, Reynaud E. Synphilin suppresses α-synuclein neurotoxicity in a Parkinson's disease Drosophila model. Genesis. 2011;49:392-402. https://doi.org/10.1002/dvg.20740
  234. Vascellari S, Melis M, Palmas V, Pisanu S, Serra A, Perra D, et al. Clinical phenotypes of Parkinson's disease associate with distinct gut microbiota and metabolome enterotypes. Biomolecules. 2021;11:144. https://doi.org/10.3390/biom11020144
  235. Vaz RL, Outeiro TF, Ferreira JJ. Zebrafish as an animal model for drug discovery in Parkinson's disease and other movement disorders: a systematic review. Front Neurol. 2018;9:347. https://doi.org/10.3389/fneur.2018.00347
  236. Visanji NP, Brotchie JM, Kalia LV, Koprich JB, Tandon A, Watts JC, et al. α-Synuclein-based animal models of Parkinson's disease: challenges and opportunities in a new era. Trends Neurosci. 2016;39:750-62. https://doi.org/10.1016/j.tins.2016.09.003
  237. Volff JN. Genome evolution and biodiversity in teleost fish. Heredity. 2005;94:280-94. https://doi.org/10.1038/sj.hdy.6800635
  238. Wakabayashi K, Tanji K, Mori F, Takahashi H. The Lewy body in Parkinson's disease: molecules implicated in the formation and degradation of α-synuclein aggregates. Neuropathology. 2007;27:494-506. https://doi.org/10.1111/j.1440-1789.2007.00803.x
  239. Wang Y, Liu W, Yang J, Wang F, Sima Y, Zhong Z, et al. Parkinson's disease-like motor and non-motor symptoms in rotenone-treated zebrafish. Neurotoxicology. 2017;58:103-9. https://doi.org/10.1016/j.neuro.2016.11.006
  240. Wang YC, Feng GY, Xia QJ, Hu Y, Xu Y, Xiong L, et al. Knockdown of α-synuclein in cerebral cortex improves neural behavior associated with apoptotic inhibition and neurotrophin expression in spinal cord transected rats. Apoptosis. 2016;21:404-20. https://doi.org/10.1007/s10495-016-1218-5
  241. Weston LJ, Cook ZT, Stackhouse TL, Sal MK, Schultz BI, Tobias ZJC, et al. In vivo aggregation of presynaptic alpha-synuclein is not influenced by its phosphorylation at serine-129. Neurobiol Dis. 2021;152:105291. https://doi.org/10.1016/j.nbd.2021.105291
  242. White RM, Sessa A, Burke C, Bowman T, LeBlanc J, Ceol C, et al. Transparent adult zebrafish as a tool for in vivo transplantation analysis. Cell Stem Cell. 2008;2:183-9. https://doi.org/10.1016/j.stem.2007.11.002
  243. Wyatt C, Bartoszek EM, Yaksi E. Methods for studying the zebrafish brain: past, present and future. Eur J Neurosci. 2015;42:1746-63. https://doi.org/10.1111/ejn.12932
  244. Xi Y, Yu M, Godoy R, Hatch G, Poitras L, Ekker M. Transgenic zebrafish expressing green fluorescent protein in dopaminergic neurons of the ventral diencephalon. Dev Dyn. 2011;240:2539-47. https://doi.org/10.1002/dvdy.22742
  245. Xu Y, Li K, Qin W, Zhu B, Zhou Z, Shi J, et al. Unraveling the role of hydrogen peroxide in α-synuclein aggregation using an ultrasensitive nanoplasmonic probe. Anal Chem. 2015;87:1968-73. https://doi.org/10.1021/ac5043895
  246. Yang X, Xu S, Qian Y, He X, Chen S, Xiao Q. Hypermethylation of the gene coding for PGC-1α in peripheral blood leukocytes of patients with Parkinson's disease. Front Neurosci. 2020;14:97. https://doi.org/10.3389/fnins.2020.00097
  247. Yurtsever I, ustundag uV, unal I, Ates PS, Emekli-Alturfan E. Rifampicin decreases neuroinflammation to maintain mitochondrial function and calcium homeostasis in rotenone-treated zebrafish. Drug Chem Toxicol. 2020:1-8.
  248. Zarranz JJ, Alegre J, Gomez-Esteban JC, Lezcano E, Ros R, Ampuero I, et al. The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Ann Neurol. 2004;55:164-73. https://doi.org/10.1002/ana.10795
  249. Zhang Z, Peng Q, Huo D, Jiang S, Ma C, Chang H, et al. Melatonin regulates the neurotransmitter secretion disorder induced by caffeine through the microbiota-gut-brain axis in zebrafish (Danio rerio). Front Cell Dev Biol. 2021;9:678190. https://doi.org/10.3389/fcell.2021.678190
  250. Zheng B, Liao Z, Locascio JJ, Lesniak KA, Roderick SS, Watt ML, et al. PGC-1α, a potential therapeutic target for early intervention in Parkinson's disease. Sci Transl Med. 2010;2:52ra73. https://doi.org/10.1126/scitranslmed.3001059
  251. Zhu J, Xia R, Liu Z, Shen J, Gong X, Hu Y, et al. Fenvalerate triggers Parkinson-like symptom during zebrafish development through initiation of autophagy and p38 MAPK/mTOR signaling pathway. Chemosphere. 2020;243:125336. https://doi.org/10.1016/j.chemosphere.2019.125336
  252. Zou J, Fan YJ, Meng YQ, Xu H, Fan J. An exploratory analysis of γ-synuclein expression in endometrioid endometrial cancer. BMJ Open. 2012;2:e000611. https://doi.org/10.1136/bmjopen-2011-000611