DOI QR코드

DOI QR Code

Adhesive Properties of Epoxy Composite According to the Surface Treatment of Cu Substrate and Adhesion Promoter Content

구리기판의 표면처리 및 접착증진제 함량에 따른 에폭시 컴포지트의 접착특성

  • Eun-jin Kim (Materials & Component Convergence R&D Department, Korea Institute of Industrial Technology (KITECH)) ;
  • Jung Soo Kim (Department of Material Chemical Engineering, Hanyang University) ;
  • Young-Wook Chang (Department of Material Chemical Engineering, Hanyang University) ;
  • Dong Hyun Kim (Materials & Component Convergence R&D Department, Korea Institute of Industrial Technology (KITECH))
  • 김은진 (한국생산기술연구원 소재부품융합연구부문) ;
  • 김정수 (한양대학교 재료화학공학과) ;
  • 장영욱 (한양대학교 재료화학공학과) ;
  • 김동현 (한국생산기술연구원 소재부품융합연구부문)
  • Received : 2022.05.26
  • Accepted : 2022.10.04
  • Published : 2022.12.31

Abstract

In this study, we synthesized poly(itaconic acid-co-acrylamide) (IAcAAM) used as a novel polymer adhesion promoter to improve the adhesion strength of surface-treated Cu lead frames and epoxy composites. IAcAAM comprising itaconic acid, acrylamide was prepared through radical aqueous polymerization. The chemical structure and properties of IAcAAM was analyzed by FT-IR, 1H-NMR, GPC, and DSC. The surface of the copper lead frame was treated with high temperature, alkali, and UV ozone to reduce the water contact angle and increase the surface energy. The adhesive strength of Cu lead frame and epoxy composite increased with the decrease of contact angle. The adhesive strength of Cu lead frame/epoxy composite increased with the addition of IAcAAM in epoxy composite. As silica content increased, the adhesive strength of Cu lead frame and epoxy composite tended to slightly decrease.

본 연구에서는 표면처리된 Cu 리드프레임과 에폭시 컴포지트의 접착강도를 향상시키기 위하여 신규 고분자 접착증진제인 poly(itaconic acid-co-acrylamide) (IAcAAM)를 합성하였다. 이타콘산과 아크릴아마이드를 포함하는 IAcAAM은 라디칼 수성 중합을 통해 제조되었다. IAcAAM의 구조 및 물성은 FT-IR, 1H-NMR, GPC 및 DSC로 분석하였다. Cu 리드프레임의 표면은 고온, 알칼리, UV 오존으로 처리하였다. 표면처리 후 Cu 리드프레임의 접촉각이 감소함에 따라 Cu 리드프레임/에폭시 컴포지트의 접착강도는 증가하였다. 에폭시 혼합물에 IAcAAM을 첨가함에 따라 Cu 리드프레임/에폭시 컴포지트의 접착강도가 증가하였다. 또한, 에폭시 혼합물에 실리카 함량이 증가할수록 Cu 리드 프레임과 에폭시 컴포지트의 접착강도는 약간 감소하는 경향을 나타내었다.

Keywords

Acknowledgement

본 연구는 산업통상자원부 산하 한국산업기술평가관리원이 연구 지원한 소재부품기술개발사업(20014546, 20004044)의 일환으로 수행되었기에 감사드립니다.

References

  1. J. Zeng, R. Fu, Y. Shen, H. He, and X. Song, Journal of applied polymer science, 113, 2117 (2009).
  2. G. H. Oh, S. J. Joo, J. W. Jeong, and H. S. Kim, Microelectronics Reliability, 92, 63 (2019).
  3. J. H. Roh, J. H. Lee, N. I. Kim, H. M. Kang, T. H. Yoon, and K. H. Song, Journal of applied polymer science, 90, 2508 (2003).
  4. S. J. Cho, K. W. Paik, and Y. G. Kim, IEEE Transactions on Components, Packaging and Manufacturing Technology Part B, 20, 167 (1997).
  5. D. Xin, and Q. Han, The Journal of Adhesion, 91, 409 (2015)
  6. S. W. Fu, and C. C. Lee, Journal of Materials Science: Materials in Electronics, 28, 15739 (2017).
  7. J. Yang, C. Wang, J. Zeng, and D. Jiang, Science and Engineering of Composite Materials, 25, 253 (2018).
  8. H. Lin, and G. S. Frankel, Corrosion engineering, science and technology, 48, 461 (2013).
  9. W. Tan, X. Du, G. Xie, S. Qin, H. Mei, and X. Cheng, 2008 International Conference on Electronic Packaging Technology & High Density Packaging, 1 (2008).
  10. S. C. Chao, W. C. Huang, J. H. Liu, J. M. Song, P. Y. Shen, C. L Huang, L. T. Hung, and C. H. Chang, Microelectronics Reliability, 99, 161 (2019).
  11. C. H. Lin, W. C. Huang, Y. C. Ke, and J. M. Song, 2021 IEEE CPMT Symposium Japan, 61 (2021). 
  12. S. M. Song, K. Cho, C. E. Park, H. K. Yun, and S. Y. Oh, Journal of applied polymer science, 85, 2202 (2002).
  13. S. Luo, and C. P. Wong, IEEE Transactions on components and packaging technologies, 24, 43 (2001). https://doi.org/10.1109/6144.910801
  14. V. Pang, Z. J. Thompson, G. D. Joly, F. S. Bates, and L. F. Francis, ACS Applied Polymer Materials, 2, 464 (2019). https://doi.org/10.1021/acsabm.8b00662
  15. J. M. Dean, N. E. Verghese, H. Q. Pham, and F. S. Bates, Macromolecules, 36, 9267 (2003).
  16. C. Declet-Perez, E. M. Redline, L. F. Francis, and F. S. Bates, ACS Macro Letters, 1, 338 (2012).
  17. Y. S. Thio, J. Wu, and F. S. Bates, Macromolecules, 39, 7187 (2006). https://doi.org/10.1021/ma052731v
  18. L. S. Son, H. N. Lee, and H. K. Lee, Journal of the Korean institute of surface engineering, 45, 8 (2012).
  19. G. Sharma, A. Kumar, M. Naushad, B. Thakur, D. V. N. Vo, B. Gao, A. A. Al-Kahtani, and F. J. Stadler, Journal of Hazardous Materials, 416, 125714 (2021).
  20. S. N. A. M. Jamil, M. Khairuddin, and R. Daik, e-Polymers, 15, 45 (2015).
  21. S. Dan, S. Banivaheb, and H. Hashemipour, Polymer Bulletin, 78, 1887 (2021).
  22. M. D. Olawale, J. A. Obaleye, and E. O. Oladele, Nigerian Research Journal of Chemical Sciences, 8, 280 (2020).
  23. C. Erbil, and N. Uyanik, Polymer international, 50, 792 (2001).
  24. Y. Aso, M. Sano, R. Yada, T. Tanaka, T. Aoki, H. Ohara, T. Kusukawa, K. Matsumoto, and K. Wada, Materials, 13, 2707 (2020).
  25. S. Zhang, Y. Dang, X. Ni, C. Yuan, H. Chen, and A. Ju, Polymers, 13, 3862 (2021).
  26. Z. Abdollahi, and V. G. Gomes, The University of Sydney NSW, Australia, 1 (2006).
  27. Y. C. Kim, O. J. Cha, and K. M. Kim, Journal of Adhesion and Interface, 11, 168 (2010).
  28. H. K. Cho, and N. C. Cho, Journal of Conservation Science, 22, 61 (2008).
  29. B. K. Choi, H. G. Kim, M. K. Seo, and S. J. Park, Applied Chemistry for Engineering, 25, 520 (2014).