DOI QR코드

DOI QR Code

Analysis of Water Quality Variation after Hydraulic Changes in Yeongsan River

수리 변동에 따른 영산강에서의 수질 변화 분석 연구

  • Kim, Yu-Heun (Department of Environmental Science and Engineering, Ewha Womans' University) ;
  • Lee, Hye-Won (Department of Environmental Science and Engineering, Ewha Womans' University) ;
  • Choi, Jung-Hyun (Department of Environmental Science and Engineering, Ewha Womans' University)
  • 김유흔 (이화여자대학교 환경공학과) ;
  • 이혜원 (이화여자대학교 환경공학과) ;
  • 최정현 (이화여자대학교 환경공학과)
  • Received : 2021.11.24
  • Accepted : 2021.12.23
  • Published : 2022.01.30

Abstract

The Yeongsan River, one of the four major rivers in Korea, shows the highest degree of water pollution compared to the other major rivers. The construction and opening of two weirs, Seungchon and Juksan, induced fluctuations in the hydrologic conditions and water quality of the river. To investigate the water quality changes caused by the opening of the weir in 2017, this study analyzed the water quality data using the non-parametric Wilcoxon signed-rank test and the three-dimensional spatiotemporal plots. The non-parametric statistical test results showed that the concentration of all parameters has increased after 2017 at a significance level of 0.05. For the parameters that showed the highest degree of change, chlorophyll-a and suspended solids, the median values have increased by more than 30% after weir opening. Visual analysis additionally showed the spatial changes in the Yeongsan River. Generally, the sites above the Seungchon weir showed higher pollution levels than those above the Juksan weir. In time series, visual analysis results also showed the trend of rising concentration for all water quality parameters, indicating that the opening of two weirs had a significant effect on the change in water quality of the Yeongsan River.

Keywords

Acknowledgement

이 논문은 한국연구재단의 지원을 받아 수행되었습니다 (2018R1A6A1A08025520, 2018R1D1A1B07049419).

References

  1. Boyer, J. N., Sterling, P., and Jones, R. D. (2000). Maximizing information from a water quality monitoring network through visualization techniques, Estuarine, Coastal and Shelf Science, 50(1), 39-48. https://doi.org/10.1006/ecss.1999.0530
  2. Canfield, D. E. (1983). Prediction of chlorophyll a concentrations in Florida lakes: The importance of phosphorus and nitrogen 1, Journal of the American Water Resources Association, 19(2), 255-262. https://doi.org/10.1111/j.1752-1688.1983.tb05323.x
  3. Cha, S. M., Kang, M. J., Park, Y. E., Lee, S. W., and Kim, J. H. (2015). Water quality changes according to the midstream weir construction in the Yeongsan river, Korea, Desalination and Water Treatment, 53(11), 3066-3071. https://doi.org/10.1080/19443994.2014.922735
  4. Crawford, C. G., Slack, J. R., and Hirsch, R. M. (1983). Nonparametric tests for trends in water-quality data using the Statistical Analysis System, US Geological Survey, Open-File Report 83-550.
  5. Hamed, K. H. (2008). Trend detection in hydrologic data: the Mann-Kendall trend test under the scaling hypothesis, Journal of hydrology, 349(3-4), 350-363. https://doi.org/10.1016/j.jhydrol.2007.11.009
  6. Helsel, D. R. and Hirsch, R. M. (1992). Statistical methods in water resources (Vol. 49), Elsevier.
  7. Jung, S. J., Lee, D. J., Hwang, K. S., Lee, K. H., Choi, K. C., Im, S. S., Lee, Y. H., Lee, J. Y., and Lim, B. J. (2012). Evaluation of pollutant characteristics in Yeongsan river using multivariate analysis, Korean Journal of Ecology and Environment, 45(4), 368-377. [Korean Literature] https://doi.org/10.11614/KSL.2012.45.4.368
  8. Karamouz, M., Kerachian, R., Akhbari, M., and Hafez, B. (2009). Design of river water quality monitoring networks: A case study, Environmental Modeling & Assessment, 14(6), 705-714. https://doi.org/10.1007/s10666-008-9172-4
  9. Kim, D. R. and Shin, C. M. (2021). Algal boom characteristics of Yeongsan river based on weir and estuary dam operating conditions using EFDC-NIER Model, Water, 13(16), 2295. https://doi.org/10.3390/w13162295
  10. Kim, J. S., Kim, J. Y., and Seo, D. I. (2020). Effect of major pollution sources on algal blooms in the Seungchon weir and Juksan weir in the Yeongsan river using EFDC, Journal of Korea Water Resources Association, 53(5), 369-381. [Korean Literature] https://doi.org/10.3741/JKWRA.2020.53.5.369
  11. Kisi, O. and Ay, M. (2014). Comparison of Mann-Kendall and innovative trend method for water quality parameters of the Kizilirmak river, Turkey, Journal of hydrology, 513, 362-375. https://doi.org/10.1016/j.jhydrol.2014.03.005
  12. Lee, C. H., Cho, K. A., Song, E. S., and Sin, Y. S. (2005). Trends of phytoplankton community and water quality and implications for management in estuarine river systems, Korean Journal of Ecology and Environment, 38(2), 160-180. [Korean Literature]
  13. Lee, H. W., Bhang, K. J., and Park, S. S. (2010). Effective visualization for the spatiotemporal trend analysis of the water quality in the Nakdong river of Korea, Ecological Informatics, 5(4), 281-292. https://doi.org/10.1016/j.ecoinf.2010.05.004
  14. Lee, H. W., Kim, H. Y., Choi, J. H., and Park, S. S. (2019). Statistical and visual comparison of water quality changes caused by a large river restoration project, Environmental Engineering Science, 36(1), 23-34. https://doi.org/10.1089/ees.2018.0150
  15. Lee, Y. W., Yang, W. M., and Yoon, K. S. (2019). A study on the enhancement method of Yeongsan river maintenance flow, Journal of Korean Society of Urban Environment, 19(1), 13-20. [Korean Literature] https://doi.org/10.33768/ksue.2019.19.1.013
  16. Liu, J., Zhang, X., Xia, J., Wu, S., She, D., and Zou, L. (2016). Characterizing and explaining spatio-temporal variation of water quality in a highly disturbed river by multi-statistical techniques, Springer Plus, 5(1), 1-17. https://doi.org/10.1186/s40064-015-1659-2
  17. Liu, X., Tao, Y., Zhou, K., Zhang, Q., Chen, G., and Zhang, X. (2017). Effect of water quality improvement on the remediation of river sediment due to the addition of calcium nitrate, Science of the Total Environment, 575, 887-894. https://doi.org/10.1016/j.scitotenv.2016.09.149
  18. Luo, P., He, B., Takara, K., Razafindrabe, B. H., Nover, D., and Yamashiki, Y. (2011). Spatiotemporal trend analysis of recent river water quality conditions in Japan, Journal of Environmental monitoring, 13(10), 2819-2829. https://doi.org/10.1039/c1em10339c
  19. Marshall, H. G., Lacouture, R. V., Buchanan, C., and Johnson, J. M. (2006). Phytoplankton assemblages associated with water quality and salinity regions in Chesapeake bay, USA, Estuarine, Coastal and Shelf Science, 69(1-2), 10-18. https://doi.org/10.1016/j.ecss.2006.03.019
  20. Ministry of Environment (ME). (2021). Water Environment Information System, http://water.nier.go.kr/waterMeasure (accessed Dec. 2021).
  21. Naselli-Flores, L. and Barone, R. (2005). Water-level fluctuations in Mediterranean reservoirs: Setting a dewatering threshold as a management tool to improve water quality, Hydrobiologia, 548(1), 85-99. https://doi.org/10.1007/s10750-005-1149-6
  22. Ofman, P., Puchlik, M., Simson, G., Krasowska, M., and Struk-Sokolowska, J. (2017). Impact assessment of treated wastewater on water quality of the receiver using the Wilcoxon test, E3S Web of Conferences, 22, 00127.
  23. Prathumratana, L., Sthiannopkao, S., and Kim, K. W. (2008). The relationship of climatic and hydrological parameters to surface water quality in the lower Mekong river, Environment international, 34(6), 860-866. https://doi.org/10.1016/j.envint.2007.10.011
  24. Quinlan, R., Filazzola, A., Mahdiyan, O., Shuvo, A., Blagrave, K., Ewins, C., Moslenko, L., Gray, D. K., O'Reilly, C. M., and Sharma, S. (2021). Relationships of total phosphorus and chlorophyll in lakes worldwide, Limnology and Oceanography, 66(2), 392-404. https://doi.org/10.1002/lno.11611
  25. Seo, D., Kim, J., and Kim, J. (2020). Analysis of influence on water quality and harmful algal blooms due to weir gate control in the Nakdong river, Geum river, and Yeongsan river, Journal of Korea Water Resources Association, 53(10), 877-887. [Korean Literature] https://doi.org/10.3741/JKWRA.2020.53.10.877
  26. Seo, K., Na, J. E., Ryu, H. S., and Kim, K. H. (2018). Characteristics of nitro-nutrients and phytoplankton dynamics in the Yeongsan river after weir construction, Journal of Korean Society on Water Environment, 34(4), 423-430. [Korean Literature] https://doi.org/10.15681/KSWE.2018.34.4.423
  27. Shin, J. K., Kang, B. G., and Hwang, S. J. (2016). Limnological study on spring-bloom of a green algae, eudorina elegans and weirwater pulsed flows in the midstream (Seungchon weir pool) of the Yeongsan river, Korea, Korean Journal of Ecology and Environment, 49(4), 320-333. [Korean Literature] https://doi.org/10.11614/KSL.2016.49.4.320
  28. Shin, Y. S., Yu, H. S., Lee, H. K., Lee, D. H., and Park, G. W. (2015). The change in patterns and conditions of algal blooms resulting from construction of weirs in the Youngsan river: Long-term data analysis, Korean Journal of Ecology and Environment, 48(4), 238-252. [Korean Literature] https://doi.org/10.11614/KSL.2015.48.4.238
  29. Son, M., Park, J. H., Lim, C. H., Kim, S. K., and Lim, B. J. (2013). Seasonal change of phytoplankton community and water quality in Yeongsan river watershed, Korean Journal of Environmental Biology, 31(2), 105-112. [Korean Literature] https://doi.org/10.11626/KJEB.2013.31.2.105
  30. Song, E. S., Jeon, S. M., Lee, E. J., Park, D. J., and Shin, Y. S. (2012). Long-term trend analysis of chlorophyll a and water quality in the Yeongsan river, Korean Journal of Ecology and Environment, 45(3), 302-313. [Korean Literature]
  31. Song, E. S., Shin, Y. S., Jang, N. I., and Lee, J. B. (2010). Assessment of nutrient and light limitation of phytoplankton in the Youngsan lake, Korean Journal of Ecology and Environment, 43(1), 35-43. [Korean Literature]
  32. Teodosiu, C., Robu, B., Cojocariu, C., and Barjoveanu, G. (2015). Environmental impact and risk quantification based on selected water quality indicators, Natural Hazards, 75(1), 89-105. https://doi.org/10.1007/s11069-013-0637-7
  33. Vega, M., Pardo, R., Barrado, E., and Deban, L. (1998). Assessment of seasonal and polluting effects on the quality of river water by exploratory data analysis, Water research, 32(12), 3581-3592. https://doi.org/10.1016/S0043-1354(98)00138-9
  34. Wang, Y. B., Liu, C. W., Liao, P. Y., and Lee, J. J. (2014). Spatial pattern assessment of river water quality: Implications of reducing the number of monitoring stations and chemical parameters, Environmental monitoring and assessment, 186(3), 1781-1792. https://doi.org/10.1007/s10661-013-3492-9
  35. Xu, G., Li, P., Lu, K., Tantai, Z., Zhang, J., Ren, Z., Wang, X., Yu, K., Shi, P., and Cheng, Y. (2019). Seasonal changes in water quality and its main influencing factors in the Dan river basin, Catena, 173, 131-140. https://doi.org/10.1016/j.catena.2018.10.014
  36. Zhang, R., Zeng, F. X., Liu, W. J., Zeng, R. J., and Jiang, H. (2014). Precise and economical dredging model of sediments and its field application: Case study of a river heavily polluted by organic matter, nitrogen, and phosphorus, Environmental management, 53(6), 1119-1131. https://doi.org/10.1007/s00267-014-0268-0