• Title/Summary/Keyword: Spatiotemporal plot

Search Result 2, Processing Time 0.016 seconds

Analysis of Water Quality Variation after Hydraulic Changes in Yeongsan River (수리 변동에 따른 영산강에서의 수질 변화 분석 연구)

  • Kim, Yu-Heun;Lee, Hye-Won;Choi, Jung-Hyun
    • Journal of Korean Society on Water Environment
    • /
    • v.38 no.1
    • /
    • pp.1-9
    • /
    • 2022
  • The Yeongsan River, one of the four major rivers in Korea, shows the highest degree of water pollution compared to the other major rivers. The construction and opening of two weirs, Seungchon and Juksan, induced fluctuations in the hydrologic conditions and water quality of the river. To investigate the water quality changes caused by the opening of the weir in 2017, this study analyzed the water quality data using the non-parametric Wilcoxon signed-rank test and the three-dimensional spatiotemporal plots. The non-parametric statistical test results showed that the concentration of all parameters has increased after 2017 at a significance level of 0.05. For the parameters that showed the highest degree of change, chlorophyll-a and suspended solids, the median values have increased by more than 30% after weir opening. Visual analysis additionally showed the spatial changes in the Yeongsan River. Generally, the sites above the Seungchon weir showed higher pollution levels than those above the Juksan weir. In time series, visual analysis results also showed the trend of rising concentration for all water quality parameters, indicating that the opening of two weirs had a significant effect on the change in water quality of the Yeongsan River.

A Simulation Study to Investigate Climatic Controls on Net Primary Production (NPP) of a Rugged Forested Landscape in the Mid-Western Korean Peninsula (기복이 심한 한반도 중서부 산림경관에서 기후가 순일차생산(NPP)에 미치는 영향에 대한 모사연구)

  • Eum Sungwon;Kang Sinkyu;Lee Dowon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.7 no.1
    • /
    • pp.66-77
    • /
    • 2005
  • We have investigated microclimatic controls on the spatiotemporal variations of net primary production (NPP) of a rugged forested watershed using the process-based biogeochemical model (BIOME-BGC). To validate the model simulation of water and carbon cycles at the plot scale, we have conducted field survey over deciduous broadleaf forest (DBF) and evergreen needleleaf forest (ENF) since 2000. The modeled values of soil temperature, soil moisture and soil respiration showed high correlation with those from the field measurements. The modeled seasonal changes of NPP showed high correlation with air temperature but no significant correlation with water related parameters. The precipitation frequency turned out to be the best climatic factor to explain the annual variation of NPP. Furthermore, NPP of ENF was more sensitive to precipitation frequency than that of DBF. With changes in vegetation cover and topography, the spatial distribution of NPP was of great heterogeneity, which was negatively correlated with the magnitude of NPP. Despite the annual precipitation of 1,400mm, NPP at the study site was constrained by the amount of water available for the vegetation. Such a modeling result should be verified by the field measurements.