DOI QR코드

DOI QR Code

Occupancy Probability Estimation of Endangered Species Clithon retropictus

멸종위기종인 기수갈고둥의 잠재적 서식지 예측을 위한 점유 확률 추정

  • Park, Woong-Bae (Department of Biological Sciences, Kongju National University) ;
  • Lim, Sung-Ho (Department of Biological Sciences, Kongju National University) ;
  • Won, Doo-Hee (Doohee Institute of Ecological Research, Korea Ecosystem Service Inc.) ;
  • Lee, Kyung-Lak (Water Environmental Engineering Research Division, National Institute of Environmental Research) ;
  • Hong, Cheol (Water Environmental Engineering Research Division, National Institute of Environmental Research) ;
  • Do, Yuno (Department of Biological Sciences, Kongju National University)
  • 박웅배 (공주대학교 자연과학대학) ;
  • 임성호 (공주대학교 자연과학대학) ;
  • 원두희 ((주)생태조사단 부설 두희생태연구소) ;
  • 이경락 (국립환경과학원 물환경공학연구과) ;
  • 홍철 (국립환경과학원 물환경공학연구과) ;
  • 도윤호 (공주대학교 자연과학대학)
  • Received : 2022.03.16
  • Accepted : 2022.03.22
  • Published : 2022.03.31

Abstract

We attempted to estimate potential habitats of Clithon retropictus and to determine the community structure of benthic macroinvertebrates by presence of C. retropictus. 2016 to 2018 database of "Survey and Assessment of Estuary Ecosystem Health" by the Ministry of Environment were used to identify the distribution site of C. retropictus. The occupancy model was applied to estimate the potential habitat of C. retropictus. Four diversity indices were used to confirm the community structure of benthic macroinvertebrates. C. retropictus was found in the southern coast area and part of the east coast, and this pattern was consistent with previous studies. Additionally, the occupancy model predicted that a potential habitat of C. retropictus could appear in the west coast area. The community structure of benthic macroinvertebrates was relatively high at the site with C. retropictus than the site without C. retropictus. Therefore, the occupancy model can be considered when conserving C. retropictus inhabiting a limited area. Additionally, C. retropictus can be used to the indicator species that can represent the brackish water environment.

기수갈고둥의 잠재적 서식지를 추정하고, 기수갈고둥의 존재 여부에 따라 저서성 거대무척추동물의 군집 구조를 확인하고자 했다. 기수갈고둥의 분포지는 환경부에서 수행 중인 "하구 수생태계 현황 조사 및 건강성 평가" 자료 중 2016년부터 2018년까지의 자료를 이용했다. 점유 모델은 기수갈고둥의 잠재적 서식지를 추정하기 위해 사용되었으며 저서성 거대무척추동물의 군집 구조를 확인하기 위해 4개의 다양성 지수가 사용되었다. 기수갈고둥은 남해안 일대와 동해안 일부 지역에서 발견되었으며, 이러한 양상은 기존 연구와 일치했다. 추가로 점유 모델 적용 결과 기수갈고둥의 잠재적 서식지가 서해안 일부 지역에 나타날 수 있음을 예측했다. 저서성 거대무척추동물의 군집 구조는 기수갈고둥이 채집되지 않은 지역에 비해 기수갈고둥이 채집된 지역에서 상대적으로 높았다. 따라서 제한된 지역에 서식하는 기수갈고둥을 보전할 때 점유 모델을 고려할 수 있으며, 기수갈고둥은 기수환경을 대표할 수 있는 생물로서 지표종으로 활용될 수 있는 것으로 판단된다.

Keywords

Acknowledgement

본 논문은 환경부의 재원으로 국립환경과학원의 지원을 받아 수행하였습니다(NIER-2020-04-02-009).

References

  1. Burnham, K.P. and D.R. Anderson. 2002. A practical information-theoretic approach. Model Selection and Multimodel Inference 2: 70-71.
  2. Byholm, P., D. Burgas, T. Virtanen and J. Valkama. 2012. Competitive exclusion within the predator community influences the distribution of a threatened prey species. Ecology 93(8): 1802-1808. https://doi.org/10.1890/12-0285.1
  3. Choi, S.D., N.Y. Myeong, S.M. Choi, C. Lee and Y.K. An. 2018. Protection and preservation of Clithon retropictus, level II endangered species declining due to development projects carried out in its habitat. Korean Journal of Environmental Biology 36(2): 174-179. https://doi.org/10.11626/KJEB.2018.36.2.174
  4. Duelli, P. and M.K. Obrist. 2003. Biodiversity indicators: the choice of values and measures. Agriculture, Ecosystems and Environment 98(1-3): 87-98. https://doi.org/10.1016/S0167-8809(03)00072-0
  5. Hammer, O., D.A. Harper and P.D. Ryan. 2001. PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4(1): 9.
  6. Heink, U. and I. Kowarik. 2010. What criteria should be used to select biodiversity indicators?. Biodiversity and Conservation 19(13): 3769-3797. https://doi.org/10.1007/s10531-010-9926-6
  7. Hines, J.E. 2006. PRESENCE2: Software to estimate patch occupancy and related parameters. USGS-PWRC. http://www.mbr-pwrc.usgs.gov/software/presence.html.
  8. Hirata, T. 1992. Seasonal changes in moving activity of Clithon retropictus(Prosobranchia: Neritidae). Venus 51: 57-66.
  9. Hirata, T., H. Ueda, Y. Tsuchiya, T. Sato and S. Nishiwaki. 1999. Distribution of Clithon retropictus (Gastropoda; Neritidae) and environmental conditions in the rivers of Izu Peninsula. Memoirs of Faculty of Education and Human Science of Yamanashi University 1: 24-30.
  10. Jang, K.G., M.S. Kim, S.G. Jo, W. Yih and H.S. Kim. 2021. Habitat environments and spatiotemporal distribution of Clithon retropictum at the estuaries of Bonggang and Miryoung Streams in the Southern Coast of Korea. Ocean and Polar Research 43(3): 127-140. https://doi.org/10.4217/OPR.2021.43.3.127
  11. Jeong, H.D., J.D. Hwang, K.K. Jung, S. Heo, K.T. Sung, W.J. Go, J.Y. Yang and S.W. Kim. 2003. Long term trend of change in water temperature and salinity in coastal waters around Korean peninsula. Journal of the Korean Society of Marine Environment and Safety 9(2): 59-64.
  12. Kobayashi, S. and K. Iwasaki. 2002. Distribution and spatiotemporal variation in the population structure of the fluvial neritid gastropod Clithon retropictus. Benthos Research 57(2): 91-101. https://doi.org/10.5179/benthos1996.57.2_91
  13. Lee, S.D., M.J. Kim and J.S. Kim. 2018. Ecological characteristic of Clithon retropictus inhabitating in Yeoncho River in Southern Coastal Area. Korean Journal of Environment and Ecology 32(6): 591-602. https://doi.org/10.13047/KJEE.2018.32.6.591
  14. MacKenzie, D.I., J.D. Nichols, G.B. Lachman, S. Droege, J. Andrew Royle and C.A. Langtimm. 2002. Estimating site occupancy rates when detection probabilities are less than one. Ecology 83(8): 2248-2255. https://doi.org/10.1890/0012-9658(2002)083[2248:esorwd]2.0.co;2
  15. Magurran, A.E. 1988. Ecological diversity and its measurement. Princeton university press.
  16. McLoughlin, P.D., D.W. Morris, D. Fortin, E. Vander Wal and A.L. Contasti. 2010. Considering ecological dynamics in resource selection functions. Journal of Animal Ecology 79(1): 4-12. https://doi.org/10.1111/j.1365-2656.2009.01613.x
  17. Miyajima, H. and K. Wada. 2014. Spatial distribution in relation to life history in the neritid gastropod Clithon retropictus in the Kanzaki River Estuary, Osaka, Japan. Plankton and Benthos Research 9(4): 207-216. https://doi.org/10.3800/pbr.9.207
  18. Moore, A.L. and M.A. McCarthy. 2016. Optimizing ecological survey effort over space and time. Methods in Ecology and Evolution 7(8): 891-899. https://doi.org/10.1111/2041-210X.12564
  19. Nishiwaki, S. 1991. Egg-laying season and monthly change in egg capsule production of Clithon retropictus(Prosobranchia: Neritidae) in the Naka River of Izu Peninsula. Venus 50: 197-201.
  20. Noseworthy, R.G., H.J. Lee and K.S. Choi. 2013. The occurrence of Clithon retropictus (v. Martens, 1879) (Gastropoda: Neritidae) in an unusual habitat, northern Jeju Island, Republic of Korea. Ocean Science Journal 48(3): 259-262. https://doi.org/10.1007/s12601-013-0023-2
  21. Ohara, T. and K. Tomiyama. 2000. Niche segregation of coexisting two freshwater snail species, Semisulcospira libertina (Gould) (Prosobranchia: Pleuroceridae) and Clithon retropictus (Martens) (Prosobranchia: Neritidae). Japanese Journal of Malacology 59(2): 135-147.
  22. Rota, C.T., M.A. Ferreira, R.W. Kays, T.D. Forrester, E.L. Kalies, W.J. McShea, A.W. Parsons and J.J. Millspaugh. 2016. A multispecies occupancy model for two or more interacting species. Methods in Ecology and Evolution 7(10): 1164-1173. https://doi.org/10.1111/2041-210X.12587
  23. Shigemiya, Y. and M. Kato. 2001. Age distribution, growth, and lifetime copulation frequency of a freshwater snail, Clithon retropictus(Neritidae). Population Ecology 43(2): 133-140. https://doi.org/10.1007/PL00012024