DOI QR코드

DOI QR Code

3차원 아음속 비정렬 패널법을 이용한 정상/비정상 공력 해석 프로그램 개발

Development of Steady/Unsteady Aerodynamic Analysis Program Using 3-Dimensional Subsonic Unstructured Panel Method

  • Park, Jinyi (Department of Aerospace Engineering, Inha University) ;
  • Baek, Chung (Department of Aerospace Engineering, Inha University) ;
  • Lee, Seungsoo (Department of Aerospace Engineering, Inha University)
  • 투고 : 2021.12.30
  • 심사 : 2022.05.02
  • 발행 : 2022.06.01

초록

본 연구에서는 정상 및 비정상 공력 해석이 가능한 3차원 아음속 비정렬 패널 프로그램을 개발하고 검증하였다. 물체의 표면을 삼각형 또는 사각형 패널에 source와 doublet의 potential을 분포하여 모델링하였다. 따라서 복잡한 형상과 다물체도 쉽게 모델링 할 수 있다. Kelvin theory와 비정상 Kutta condition을 이용하여 비정상 유동에서 wake의 doublet 크기를 결정하였다. 2차원 및 3차원에서 정상 및 비정상 유동을 해석하여 그 결과를 해석해와 기존의 수치해와 비교하였다.

In this study, a steady and unsteady aerodynamic analysis program using a 3-dimensional subsonic unstructured panel method is developed and verified. Surfaces of bodies are modeled with the source and doublet distributions on triangular or quadrilateral panels. Geometry modeling of complex geometries and multi-body, therefore, can be easily accomplished. The Kelvin theory and the unsteady Kutta condition allow the doublet strength of the wake panels determined for unsteady flows. Various steady and unsteady flows in two and three dimensions are computed and compared with the analytical and the published computational results.

키워드

과제정보

이 논문은 한국항공우주학회 2021추계학술대회에서 발표한 바 있습니다. 본 연구는 국방과학연구소의 지원으로 수행되었으며 이에 대해 깊이 감사드립니다.

참고문헌

  1. Erickson, L. L., "Panel methods: An introduction," NASA Technical Paper 2995, 1990.
  2. Hess, J. L., "Calculation of potential flow about arbitrary three-dimensional lifting bodies," McDonnell Douglas Corporation Technical Report No. MDC J5679-01, 1972.
  3. Woodward, F. A., "An improved method for the aerodynamic analysis of wing-body-tail configurations in subsonic and supersonic flow, Part 1- Theory and Applications," NASA Contractor Report 2228 Part 1, 1973.
  4. Maskew, B., "Program VSAERO theory Document: a computer program for calculating nonlinear aerodynamic characteristics of arbitrary configurations," NASA Contractor Report 4023, 1987.
  5. Ashby, D. L., Dudley, M. R., Iguchi, S. K., Browne, L. and Katz, J., "Potential flow theory and operation guide for the panel code PMARC," NASA Technical Memorandum 102851, 1991.
  6. Carmichael, R. and Erickson, L., "PANAIR-A higher order panel method for predicting subsonic or supersonic linear potential flows about arbitrary configurations," AIAA 14th Fluid and Plasma Dynamics Conference, June 1981, p. 1255.
  7. Bristow, D. R. and Hawk, J. D., "Subsonic panel method for designing wing surfaces from pressure distribution," NASA Contractor Report 3713, 1983.
  8. Nathman, J. K. and Matarrese, M., "Hybrid grid (structured and unstructured) calculations with a potential-based panel method," 22nd AIAA Applied Aerodynamics Conference and Exhibit, August 2004, p. 4836.
  9. Kinney, D., "Aero-thermodynamics for conceptual design," 42nd AIAA Aerospace Sciences Meeting and Exhibit, January 2004, p. 31.
  10. Willis, D. J., "An unsteady, accelerated, high order panel method with vortex particle wakes," Ph.D. Thesis, Aeronautics and Astronautics Dept., Massachusetts Institute of Technology, 2006.
  11. Oh, J. A. and Lee, J. T., "Formulation of the Panel Method with Linearly Distributed Dipole Strength on Triangular Panels," Journal of the Society of Naval Architects of Korea, Vol. 57, No. 2, 2020, pp. 114~123. https://doi.org/10.3744/SNAK.2020.57.2.114
  12. Tai, M. S., Kang, S. O., Oh, S. J. and Park, D. H., "Prediction of Pitching Dynamic Derivatives of Aircraft Using a Unsteady Source Doublet Panel Method," Journal of Computational Fluid Engineering, Vol. 24, No. 1, 2019, pp. 113~123. https://doi.org/10.6112/kscfe.2019.24.1.113
  13. Lee, J. W., Yee, K. J. and Oh, S. J., "The Aerodynamic Analysis of Helicopter Rotors by Using an Unsteady Source-Doublet Panel Method," Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 34, No. 6, 2006, pp. 1~9. https://doi.org/10.5139/JKSAS.2006.34.6.001
  14. Maskew, B., "USAERO/FSP: a time-domain approach to compute free-surface problems," Proceedings of Symposium of High-Speed Marine Vehicles, 1991.
  15. Morino, L., "Steady, Oscillatory, and Unsteady Subsonic and Supersonic Aerodynamics-Production Version (SOUSSA-P 1.1), Volume I-Theoretical Manual," NASA Contractor Report 159130, 1980.
  16. Newman, J. N., "Distributions of sources and normal dipoles over a quadrilateral panel," Journal of Engineering Mathematics, Vol. 20, No. 2, 1986, pp. 113~126. https://doi.org/10.1007/BF00042771
  17. Van Oosterom, A. and Strackee, J., "The solid angle of a plane triangle," IEEE transactions on Biomedical Engineering, Vol. BME-30, No. 2, February 1983, pp. 125~126. https://doi.org/10.1109/TBME.1983.325207
  18. Sleeman, J. and William, C., "An experimental study at high subsonic speeds of several tail configurations on a model with an unswept wing," NACA Research Memorandum L56A06a, 1956.
  19. John, H. F., "Generic wing, pylon, and moving finned store," Arnold Engineering Development Center (AEDC), Arnold AFB, TN 37389-6001, 2000.
  20. Baek, C., Lee, S. and Huh, J., "Supersonic Multi-species Jet Interactions of Hit-to-Kill Interceptor with High Temperature Effect," Journal of The Korean Society for Aeronautical and Space Sciences, Vo. 48, No. 3, 2020, pp. 187~194. https://doi.org/10.5139/JKSAS.2020.48.3.187
  21. Giesing, J. P., "Two-dimensional potential flow theory for multiple bodies in small amplitude motion," AIAA Journal, 1970, Vol. 8, No. 11, pp. 1944~1953. https://doi.org/10.2514/3.6030
  22. McClung, A. M., "Development and validation of an unsteady panel code to model airfoil aeromechanical response," M.S. Thesis, Mechanical and Aerospace Engineering Deptartment, Oklahoma State University, 2004.