DOI QR코드

DOI QR Code

Analysis of Food Sources of Pre- and Post-diet in a Bivalve Using DNA Metabarcoding

DNA metabarcoding을 이용한 이매패류 공식 전후 먹이원 분석

  • Bong-Soon Ko (Department of Ocean Integrated Science, Chonnam National University) ;
  • Jae-won Park (Department of Ocean Integrated Science, Chonnam National University) ;
  • Chang Woo Ji (Fisheries Science Institute, Chonnam National University) ;
  • Ihn-Sil Kwak (Department of Ocean Integrated Science, Chonnam National University)
  • 고봉순 (전남대학교 해양융합과학과) ;
  • 박재원 (전남대학교 해양융합과학과) ;
  • 지창우 (전남대학교 수산과학연구소) ;
  • 곽인실 (전남대학교 해양융합과학과)
  • Received : 2022.11.29
  • Accepted : 2022.12.12
  • Published : 2022.12.31

Abstract

Research on food sources through DNA metabarcoding is being used for various organisms based on high resolution and reproducibility. In the study, we investigated the difference in food sources between pre and post-starving in the three bivalve species (Anemina acaeformis, Anodonta woodiana, and Unio douglasiae) through DNA metabarcoding using 18S rRNA V9 primer. The food source of pre-starving appeared in 87 genera, 71 families, 51 orders, 35 classes, and 22 phyla. The primary food sources were the zoo and phytoplankton, including Chlamydomonadales, Euglenales, Ploima, Sphaeropleales, and Stephanodiscales. However, all zoo and phytoplankton were not observed after starving except Schizopyrenida and Rotifera. In Levin's niche breadth analysis, the Bi index of A. woodiana is 0.3, which was higher than A. acaeformis(0.14) and U. douglasiae (0.21), indicating that they feed on various food sources. The niche overlap of A. acaeformis was measured as 0.78 in A. woodiana, 0.7 in U. douglasiae showing a relative high value compared to other bivalves. The trophic level of A. acaeformis, A. woodiana, and U. douglasiae based on the food source information were investigated as 2.0, 2.0, and 2.5, respectively. The results of the previous study on the trophic level using stable isotopes showed 1.8 to 2.4 values were similar to the results of this study. These results suggest that DNA metabarcoding can be an effective analyzing tool for the gut content in the bivalves.

본 연구에서는 이매패류 3종인 대칭이, 펄조개, 말조개의 위 내용물을 DNA metabarcoding으로 분석한 결과, 공식 전 먹이원은 22문, 35강, 51목, 71과, 87속으로 나타났다. 3종의 공식 전 공통 동식물플랑크톤은 좁쌀공말목, 유글레나목, 유영목, 스파이로플레아목, 고리돌기돌말목으로 조사되었다. 공식 후에는 대부분의 동식물플랑크톤이 검출되지 않아 소화 및 흡수, 배출된 것으로 보여진다. 먹이원 폭 분석 결과, 펄조개의 Bi 지수가 0.3으로 대칭이(0.14)와 말조개(0.21)에 비해 높아 다양한 먹이원을 섭식하는 것으로 확인되었다. 대칭이의 생태지위중첩(niche overlap)은 펄조개(0.78)와 말조개(0.7)와 다른 이매패류에서 높은 값을 보였다. 먹이원 정보를 바탕으로 계산된 대칭이, 말조개, 펄조개의 영양 단계는 각각 2.0, 2.0, 2.5로 조사되었다. 이러한 결과는 안전동위원소 문헌조사 연구에서도 이매패류의 영양 단계가 1.8~2.4로 나타나 유사하였다. 본 연구결과는 동식물플랑크톤을 주로 섭식하는 이매패류의 먹이원 분석에 DNA metabarcoding이 적용이 효과적이며 섭식생태 분석에도 활용할 수 있음을 시사한다.

Keywords

Acknowledgement

본 결과물은 한국연구재단의 지원 (NRF-2018 R1A6A1A03024314)과 환경부의 재원으로 한국환경산업기술원 수생태계 건강성 확보 기술개발사업의 지원(과제번호: 2021003050001) 및 K-WATER (2020 K-water 개방형 R&D 과제)의 지원을 받아 연구되었습니다.

References

  1. Amaral-Zettler, L.A., E.A. McCliment, H.W. Ducklow and S.M. Huse. 2009. A method for studying protistan diversity using massively parallel sequencing of V9 hypervariable regions of small-subunit ribosomal RNA genes. PloS One 4(7): e6372.
  2. Bae, M.-J. and Y.-S. Park. 2019. Evaluation of precipitation impacts on benthic macroinvertebrate communities at three different stream types. Ecological Indicators 102: 446-456. https://doi.org/10.1016/j.ecolind.2019.02.060
  3. Bergmeier, F.S., L. Ostermair and K.M. Jorger. 2021. Specialized predation by deep-sea Solenogastres revealed by sequencing of gut contents. Current Biology 31(13): R836-R837. https://doi.org/10.1016/j.cub.2021.05.031
  4. Carreon-Martinez, L. and D.D. Heath. 2010. Revolution in food web analysis and trophic ecology: diet analysis by DNA and stable isotope analysis. Molecular Ecology 19(1): 25-27. https://doi.org/10.1111/j.1365-294X.2009.04412.x
  5. Chang, M., J.-S. Hong and H.T. Huh. 1988. Environmental conditions in the pearl oyster culture grounds and food organisms of Pinctata furcata martensii (Dunker) (Bivalvia, Pterioida). Ocean Research 10(1): 67-77.
  6. Choi, H.-S., G.-S. Nam, M.-S. Kim, H.-J. Shin, M.-H. Park, S.-J. Hwang and B.-H. Kim. 2014. Response Surface Methodology for Optimization of the Removal of Organic Matters in Eutrophic Waters by Korean Freshwater Bivalves. Korean Journal of Ecology and Environment 47(4): 312-318. https://doi.org/10.11614/KSL.2014.47.4.312
  7. Cortes, E. 1999. Standardized diet compositions and trophic levels of sharks. ICES Journal of Marine Science 56(5): 707-717. https://doi.org/10.1006/jmsc.1999.0489
  8. Csardi, G. and T. Nepusz. 2006. The igraph software package for complex network research. InterJournal, Complex Systems 1695(5): 1-9.
  9. Deagle, B., D. Tollit, S. Jarman, M. Hindell, A. Trites and N. Gales. 2005. Molecular scatology as a tool to study diet: analysis of prey DNA in scats from captive Steller sea lions. Molecular Ecology 14(6): 1831-1842. https://doi.org/10.1111/j.1365-294X.2005.02531.x
  10. Guillerault, N., S. Bouletreau, A. Iribar, A. Valentini and F. Santoul. 2017. Application of DNA metabarcoding on faeces to identify European catfish Silurus glanis diet. Journal of Fish Biology 90(5): 2214-2219. https://doi.org/10.1111/jfb.13294
  11. Heo, Y.-J., H. Jo, E. Jung and H.-W. Kim. 2021. Application of NGS Analysis for the Food Source of Bivalve. Korean Journal of Ecology and Environment 54(3): 257-264. https://doi.org/10.11614/KSL.2021.54.3.257
  12. Horn, H.S. 1966. Measurement of "overlap" in comparative ecological studies. The American Naturalist 100(914): 419-424. https://doi.org/10.1086/282436
  13. Ji, C.W., D.-S. Lee, D.-Y. Lee, I.-S. Kwak and Y.-S. Park. 2020. Analysis of Food Resources of 45 Fish Species in Freshwater Ecosystems of South Korea (Based on Literature Data Analysis). Korean Journal of Ecology and Environment 53(4): 311-323. https://doi.org/10.11614/KSL.2020.53.4.311
  14. Kim, H.-J., T.-K. Lee, S.W. Jung, I.-K. Kwon and J.-W. Yoo. 2018. Analyzing Vomit of Platalea minor (Black-faced Spoonbill) to Identify Food Components using Next-Generation Sequencing and Microscopy. Korean Journal of Environmental Biology 36(2):165-173. https://doi.org/10.11626/KJEB.2018.36.2.165
  15. Kim, S. 2017. Application of next generation sequencing (NGS) technique for the stomach content analysis of marine fish. Pukyong National University.
  16. Kwak, I.-S., C.W. Ji, W.-S. Kim and D. Kong. The List of Korean Organisms Registered in the NCBI Nucleotide Database for Environmental DNA Research. Korean Journal of Ecology and Environment 55(4): 365-372.
  17. Kwon, O.K., G.M. Park and J.S. Lee. 1993. Korean Mollusks with Color Illustrations. Academy Book.
  18. Kown, S.J., Y.C. Jeon and J.H. Park. 2013. Aquatic Organsim Encyclopedia: Benthic Macroinvertebrates. Nature and Ecology.
  19. Lee, C.S. 1997. Studies on the Feeding Activity and Environmental Tolerance of Geoduck Clam, Panope japonica. Journal of Aquaculture 10(2): 213-218.
  20. Lee, J.-S. 2019. Invertebrate Fauna of Korea. National Institute of Biological Resources.
  21. Lee, S.-H., S.-J. Hwang and B.-H. Kim. 2008a. Grazing Effects of Freshwater Bivalve Unio douglasiae on the Hibernal Diatom Bloom in the Eutrophic Lake and Stream. Korean Journal of Ecology and Environment 41(2): 237-246.
  22. Lee, Y.-J., B.-H. Kim, N.-Y. Kim, H.-Y. Um and S.-J. Hwang. 2008b. Effects of temperature, food concentration, and shell size on filtering rate and pseudofeces production of Unio douglasiae on Microcystis aeruginosa. Korean Journal of Ecology and Environment 41: 61-67.
  23. Levins, R. 1968. Evolution in Changing Environments: Some Theoretical Explorations. Princeton University Press.
  24. Lindeque, P.K., A. Dimond, R.A. Harmer, H.E. Parry, K.L. Pemberton and E.S. Fileman. 2015. Feeding selectivity of bivalve larvae on natural plankton assemblages in the Western English Channel. Marine Biology 162(2): 291-308. https://doi.org/10.1007/s00227-014-2580-x
  25. Morton, B. 1978. The biology and functional morphology of Philobrya munita (Bivalvia: Philobryidae). Journal of Zoology 185(2): 173-196. https://doi.org/10.1111/j.1469-7998.1978.tb03320.x
  26. NCBI, N.C.f.B.I. 2021. NCBI Nucleotide database. https://www.ncbi.nlm.nih.gov/nucleotide/.
  27. Vaughn, C.C. and C.C. Hakenkamp. 2001. The functional role of burrowing bivalves in freshwater ecosystems. Freshwater Biology 46(11): 1431-1446. https://doi.org/10.1046/j.1365-2427.2001.00771.x