DOI QR코드

DOI QR Code

연속회분식반응기 공정의 하이드로사이클론 도입 하수처리 최적 운전특성

Optimal Operational Characteristics of Wastewater Treatment Using Hydrocyclone in a Sequencing Batch Reactor Process

  • 투고 : 2021.12.09
  • 심사 : 2022.03.18
  • 발행 : 2022.04.30

초록

The purpose of this study was to evaluate the operational characteristics of wastewater treatment using Sequencing Batch Reactor (SBR) with Aerobic Granular Sludge (AGS) separator in the pilot plant. Pilot plant experiments were conducted using SBR with AGS separator and pollution removal efficiencies were evaluated based on the operational condition and surface properties of AGS. The results of the operation on water quality of the effluent showed that the average concentration of total organic carbon, suspended solids, nitrogen, and phosphorus was 6.89 mg/L, 7.33 mg/L, 7.33 mg/L, and 0.2 mg/L, respectively. All these concentrations complied the effluent standard in Korea. The concentration of mixed liquor suspended solid (MLSS) fluctuated, but the AGS/MLSS ratio was constant at 86.5±1.3%. Although the AGS/MLSS ratio was constant, sludge volume index improved. These results suggested that the particle discharged fine sludge and increased the AGS praticle size in the AGS. Optical microscopy revealed the presence of dense AGS at the end of the operation, and particles of > 0.6 mm were found. Compared to those of belt-type AGS separator, the required area and power consumption of the hydrocyclone-type AGS separator were reduced by 27.5% and 83.8%, respectively.

키워드

과제정보

본 논문은 경기도 기술개발사업의 사업비지원(과제번호: D2020152)에 의해 수행되었습니다.

참고문헌

  1. American Public Health Association (APHA), 2008, Standard methods for the examination of water and wastewater, 21st edition, American public health association, Washington D.C., USA.
  2. Bueno, R. D. F., Faria, J. K., Uliana, D. P., Liduino, V. S., 2020, Simultaneous removal of organic matter and nitrogen compounds from landfill leachate by aerobic granular sludge, Environ. Technol., 1-15.
  3. Carlsson, B., 1998, An Introduction to sedimentation theory in wastewater treatment. Systems and Control Group, Uppsala University.
  4. Chu, H., Liu, X., Ma, J., Li, T., Fan, H., Zhou, X., Zhang, Y., Li, E., Zhang, X., 2021, Two-stage anoxic-oxic (A/O) system for the treatment of coking wastewater: Full-scale performance and microbial community analysis, Chem. Eng. J., 417, 129204. https://doi.org/10.1016/j.cej.2021.129204
  5. Corsino, S. F., Devlin, T. R., Oleszkiewicz, J. A., Torregrossa, M., 2018, Aerobic granular sludge: State of the art, applications, and new perspectives, Adv. Wastewater Treat., 155.
  6. Dangcong, P., Bernet, N., Delgenes, J. P., Moletta, R., 1999, Aerobic granular sludge a case report, Water Res., 33, 890-893. https://doi.org/10.1016/S0043-1354(98)00443-6
  7. de Bruin, L. M. M., De Kreuk, M. K., Van Der Roest, H. F. R., Uijterlinde, C., Van Loosdrecht, M. C. M., 2004, Aerobic granular sludge technology: an alternative to activated sludge?. Water Sci. Technol., 49, 1-7.
  8. de Kreuk, M. K,. 2006, Aerobic granular sludge: scaling up a new technology, Delft University of Technology.
  9. de Kreuk, M. K., Heijnen, J. J., van Loosdrecht, M. C. M., 2005, Simultaneous COD, nitrogen, and phosphate removal by aerobic granular sludge, Biotechnol. Bioeng., 90, 761-769. https://doi.org/10.1002/bit.20470
  10. de Kreuk, M. K., Kishida, N., Van Loosdrecht, M. C. M., 2007, Aerobic granular sludge state of the art, Water Sci. Technol., 55, 75-81.
  11. de Sousa Rollemberg, S. L., Barros, A. R. M., Firmino, P. I. M., Dos Santos, A. B., 2018, Aerobic granular sludge: cultivation parameters and removal mechanisms. Bioresour, Technol,, 270, 678-688. https://doi.org/10.1016/j.biortech.2018.08.130
  12. Demoulin, G., Rudiger, A., Goronszy, M. C., 2001, Cyclic activated sludge technology-recent operating experience with a 90,000 pe plant in Germany, Water Sci. Technol. 43, 331-337. https://doi.org/10.2166/wst.2001.0154
  13. El-Mamouni, R., Leduc, R., Guiot, S. R., 1998, Influence of synthetic and natural polymers on the anaerobic granulation process, Water Sci. Technol., 38, 341-347. https://doi.org/10.1016/S0273-1223(98)00710-0
  14. Guo, C., Wang, Y., Luo, Y., Chen, X., Lin, Y., Liu, X., 2018, Effect of graphene oxide on the bioactivities of nitrifying and denitrifying bacteria in aerobic granular sludge, Ecotoxicol. Environ.. Safety, 156, 287-293. https://doi.org/10.1016/j.ecoenv.2018.03.036
  15. Haaksman, V. A., Mirghorayshi, M., Van Loosdrecht, M. C. M., Pronk, M., 2020, Impact of aerobic availability of readily biodegradable Cod on morphological stability of aerobic granular sludge, Water Res., 187, 116402. https://doi.org/10.1016/j.watres.2020.116402
  16. Iorhemen, O. T., Hamza, R. A., Zaghloul, M. S., Tay, J. H. 2019. Aerobic granular sludge membrane bioreactor (AGMBR): Extracellular polymeric substances (EPS) analysis. Water Res., 156, 305-314. https://doi.org/10.1016/j.watres.2019.03.020
  17. Kaur, N., Prajapati, D. R., Sharma, S. K., 2014, Role of SBR technique in waste watertreatment plants: A review, National conference on advancements and futuristic trends in mechanical engineering, 1, 170-176.
  18. KEITI, Korea Evnironmental Industry and Technology Institute, 2018, Continuous batch-type advanced sewage treatment technology that maintains aerobic granular sludge concentration with a belt-type filter, New technology certificate number 537.
  19. Kim, H. G., Ahn, D. H., 2019a, Effects of different hydraulic retention times on contaminant removal efficiency using aerobic granular sludge, Kor. Soc. Environ. Eng. 28, 669-676.
  20. Kim, H. G., Ahn, D. H., 2019b, Study on the biological denitrification reaction of high-salinity wastewater using an Aerobic Granular Sludge (AGS), Kor. Soc. Environ. Eng. 28, 607-615.
  21. Kim, H. G., Ahn, D. H., 2019c, Effects on microbial activity of Aerobic Granular Sludge (AGS) in high-salinity wastewater, Kor. Soc. Environ. Eng. 28, 629-637.
  22. Kwon, G. T., Kim, H. G., Ahn, D. H., 2021, Effects on the stability of Aerobic Granular Sludge (AGS) by aerobic granular sludge separator, Kor. Soc. Environ. Eng., 30, 1081-1092.
  23. Lee, Y. G., Chon, H. N., Gin, H. Y., Lee, J. H., Moon, J. S., Lee, J. S., Ye, H. Y., Ahn, D. H., Ryu, J. H., 2016, Aerobic granular sludge separator device, registered patent, 10-1613711.
  24. Li, X., Luo, J., Guo, G., Mackey, H. R., Hao, T., Chen, G., 2017, Seawater-based wastewater accelerates development of aerobic granular sludge: A laboratory proof-of-concept, Water Res., 115, 210-219. https://doi.org/10.1016/j.watres.2017.03.002
  25. Liu, Y., Liu, Q. S., 2006, Causes and control of filamentous growth in aerobic granular sludge sequencing batch reactors, Biotechnol. Adv., 24, 115-127. https://doi.org/10.1016/j.biotechadv.2005.08.001
  26. Liu, Y., Wei, D., Xu, W., Feng, R., Du, B., Wei, Q., 2019, Nitrogen removal in a combined aerobic granular sludge and solid-phase biological denitrification system: system evaluation and community structure, Bioresour. Technol., 288, 121504. https://doi.org/10.1016/j.biortech.2019.121504
  27. Long, B., Yang, C. Z., Pu, W. H., Yang, J. K., Liu, F. B., Zhang, L., Zhnag J., Cheng, K., 2015, Tolerance to organic loading rate by aerobic granular sludge in a cyclic aerobic granular reactor, Bioresour. Technol., 182, 314-322. https://doi.org/10.1016/j.biortech.2015.02.029
  28. Mudhoo, A., Sharma, S. K., 2011, Microwave irradiation technology in waste sludge and wastewater treatment research, Critical reviews in Environment, Sci. Technol., 41, 999-1066.
  29. Pan, S., Tay, J. H., He, Y. X., Tay, S. T. L., 2004, The effect of hydraulic retention time on the stability of aerobically grown microbial granules, Lett. Appl. Microbiol., 38, 158-163. https://doi.org/10.1111/j.1472-765X.2003.01479.x
  30. Pronk, M., De Kreuk, M. K., De Bruin, B., Kamminga, P., Kleerebezem, R. V., Van Loosdrecht, M. C. M., 2015, Full scale performance of the aerobic granular sludge process for sewage treatment, Water Res., 84, 207-217. https://doi.org/10.1016/j.watres.2015.07.011
  31. Purba, L. D. A., Ibiyeye, H. T., Yuzir, A., Mohamad, S. E., Iwamoto, K., Zamyadi, A., Abdullah, N., 2020, Various applications of aerobic granular sludge: A review, Environ. Technol. Innovation, 101045.
  32. Szabo, E., Hermansson, M., Modin, O., Persson, F., Wilen, B. M., 2016, Effects of wash-out dynamics on nitrifying bacteria in aerobic granular sludge during start-up at gradually decreased settling time, Water, 8, 172. https://doi.org/10.3390/w8050172
  33. Winkler, M. K., Bassin, J. P., Kleerebezem, R., De Bruin, L. M. M., Van den Brand, T. P. H., Van Loosdrecht, M. C. M., 2011, Selective sludge removal in a segregated aerobic granular biomass system as a strategy to control PAO GAO competition at high temperatures, Water Res., 45, 3291-3299. https://doi.org/10.1016/j.watres.2011.03.024
  34. Yan, N., Marschner, P., Cao, W., Zuo, C., Qin, W., 2015, Influence of salinity and water content on soil microorganisms, International Soil and Water Conservation Res., 3, 316-323. https://doi.org/10.1016/j.iswcr.2015.11.003
  35. Yang, S. F., Tay, J. H., Liu, Y., 2005, Effect of substrate nitrogen/chemical oxygen demand ratio on the formation of aerobic granules, J. Env. Eng., 131, 86-92. https://doi.org/10.1061/(ASCE)0733-9372(2005)131:1(86)