DOI QR코드

DOI QR Code

Recent Progress of Light-Stimulated Synapse and Neuromorphic Devices

광 시냅스 및 뉴로모픽 소자 기술

  • Song, Seungho (School of Advanced Materials Science and Engineering, Sungkyunkwan University) ;
  • Kim, Jeehoon (School of Advanced Materials Science and Engineering, Sungkyunkwan University) ;
  • Kim, Yong-Hoon (School of Advanced Materials Science and Engineering, Sungkyunkwan University)
  • 송승호 (성균관대학교 신소재공학부) ;
  • 김지훈 (성균관대학교 신소재공학부) ;
  • 김영훈 (성균관대학교 신소재공학부)
  • Received : 2022.03.07
  • Accepted : 2022.03.10
  • Published : 2022.05.01

Abstract

Artificial neuromorphic devices are considered the key component in realizing energy-efficient and brain-inspired computing systems. For the artificial neuromorphic devices, various material candidates and device architectures have been reported, including two-dimensional materials, metal-oxide semiconductors, organic semiconductors, and halide perovskite materials. In addition to conventional electrical neuromorphic devices, optoelectronic neuromorphic devices, which operate under a light stimulus, have received significant interest due to their potential advantages such as low power consumption, parallel processing, and high bandwidth. This article reviews the recent progress in optoelectronic neuromorphic devices using various active materials such as two-dimensional materials, metal-oxide semiconductors, organic semiconductors, and halide perovskites

Keywords

References

  1. M. S. Komar, Autom. Control Comput. Sci., 51, 701 (2017). [DOI: https://doi.org/10.3103/S014641161707029X]
  2. G. Indiveri, B. Linares-Barranco, R. Legenstein, G. Deligeorgis, and T. Prodromakis, Nanotechnology, 24, 384010 (2013). [DOI: https://doi.org/10.1088/0957-4484/24/38/384010]
  3. G. S. Snider, Proc. 2008 IEEE International Symposium on Nanoscale Architectures (IEEE, Anaheim, USA, 2008) p. 85. [DOI: https://doi.org/10.1109/NANOARCH.2008.4585796]
  4. F. Yu, L. Q. Zhu, H. Xiao, W. T. Gao, and Y. B. Guo, Adv. Funct. Mater., 28, 1804025 (2018). [DOI: https://doi.org/10.1002/adfm.201804025]
  5. D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, Nature, 453, 80 (2008). [DOI: https://doi.org/10.1038/nature06932]
  6. Z. Wang, S. Joshi, S. E. Savel'ev, H. Jiang, R. Midya, P. Lin, M. Hu, N. Ge, J. P. Strachan, Z. Li, Q. Wu, M. Barnell, G. L. Li, H. L. Xin, R. S. Williams, Q. Xia, and J. J. Yang, Nat. Mater., 16, 101 (2017). [DOI: https://doi.org/10.1038/nmat4756]
  7. A. V. Avizienis, H. O. Sillin, C. Martin-Olmos, H. H. Shieh, M. Aono, A. Z. Stieg, and J. K. Gimzewski, PloS One, 7, e42772 (2012). [DOI: https://doi.org/10.1371/journal.pone.0042772]
  8. F. Alibart, S. Pleutin, D. Guerin, C. Novembre, S. Lenfant, K. Lmimouni, C. Gamrat, and D. Vuillaume, Adv. Funct. Mater., 20, 330 (2010). [DOI: https://doi.org/10.1002/adfm.200901335]
  9. J. Shi, S. D. Ha, Y. Zhou, F. Schoofs, and S. Ramanathan, Nat. Commun., 4, 2676 (2013). [DOI: https://doi.org/10.1038/ncomms3676]
  10. M. Lee, W. Lee, S. Choi, J. W. Jo, J. Kim, S. K. Park, and Y. H. Kim, Adv. Mater., 29, 1700951 (2017). [DOI: https://doi.org/10.1002/adma.201700951]
  11. J. M. Shainline, S. M. Buckley, R. P. Mirin, and S. W. Nam, Phys. Rev. Appl., 7, 034013 (2017). [DOI: https://doi.org/10.1103/PhysRevApplied.7.034013]
  12. C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanovic, R. J. Ram, M. A. Popovic, and V. M. Stojanovic, Nature, 528, 534 (2015). [DOI: https://doi.org/10.1038/nature16454]
  13. S. M. Kwon, S. W. Cho, M. Kim, J. S. Heo, Y. H. Kim, and S. K. Park, Adv. Mater., 31, 1906433 (2019). [DOI: https://doi.org/10.1002/adma.201906433]
  14. M. K. Akbari and S. Zhuiykov, Nat. Commun., 10, 3873 (2019). [DOI: https://doi.org/10.1038/s41467-019-11823-4]
  15. J. Yao, N. Xu, S. Deng, J. Chen, J. She, H.P.D. Shieh, P. T. Liu, and Y. P. Huang, IEEE Trans. Electron Devices, 58, 1121 (2011). [DOI: https://doi.org/10.1109/TED.2011.2105879]
  16. F. Ghasemi, Sci. Rep., 10, 11306 (2020). [DOI: https://doi.org/10.1038/s41598-020-68388-2]
  17. C. Choi, M. K. Choi, S. Liu, M. S. Kim, O. K. Park, C. Im, J. Kim, X. Qin, G. J. Lee, K. W. Cho, M. Kim, E. Joh, J. Lee, D. Son, S. H. Kwon, N. L. Jeon, Y. M. Song, N. Lu, and D. H. Kim, Nat. Commun., 8, 1664 (2017). [DOI: https://doi.org/10.1038/s41467-017-01824-6]
  18. X. Wang, H. Li, Y. Wu, Z. Xu, and H. Fu, J. Am. Chem. Soc., 136, 16602 (2014). [DOI: https://doi.org/10.1021/ja5088503]
  19. J. Ji and J. H. Choi, Adv. Mater. Interfaces, 6, 1900637 (2019). [DOI: https://doi.org/10.1002/admi.201900637]
  20. O. Malinkiewicz, A. Yella, Y. H. Lee, G. M. Espallargas, M. Graetzel, M. K. Nazeeruddin, and H. J. Bolink, Nat. Photonics, 8, 128 (2014). [DOI: https://doi.org/10.1038/nphoton.2013.341]
  21. Y. H. Kim, H. Cho, J. H. Heo, T. S. Kim, N. S. Myoung, C. L. Lee, S. H. Im, and T. W. Lee, Adv. Mater., 27, 1248 (2015). [DOI: https://doi.org/10.1002/adma.201403751]
  22. J. J. Yu, L. Y. Liang, L. X. Hu, H. X. Duan, W. H. Wu, H. L. Zhang, J. H. Gao, F. Zhuge, T. C. Chang, and H. T. Cao, Nano Energy, 62, 772 (2019). [DOI: https://doi.org/10.1016/j.nanoen.2019.06.007]
  23. S. Gao, G. Liu, H. Yang, C. Hu, Q. Chen, G. Gong, W. Xue, X. Yi, J. Shang, and R. W. Li, ACS Nano, 13, 2634 (2019). [DOI: https://doi.org/10.1021/acsnano.9b00340]
  24. M. K. Kim and J. S. Lee, Adv. Mater., 32, 1907826 (2020). [DOI: https://doi.org/10.1002/adma.201907826]
  25. G. Agnus, W. Zhao, V. Derycke, A. Filoramo, Y. Lhuillier, S. Lenfant, D. Vuillaume, C. Gamrat, and J. P. Bourgoin, Adv. Mater., 22, 702 (2010). [DOI: https://doi.org/10.1002/adma.200902170]
  26. L. Shao, H. Wang, Y. Yang, Y. He, Y. Tang, H. Fang, J. Zhao, H. Xiao, K. Liang, M. Wei, W. Xu, M. Luo, Q. Wan, W. Hu, T. Gao, and Z. Cui, ACS Appl. Mater. Interfaces, 11, 12161 (2019). [DOI: https://doi.org/10.1021/acsami.9b02086]
  27. S. Qin, F. Wang, Y. Liu, Q. Wan, X. Wang, Y. Xu, Y. Shi, X. Wang, and R. Zhang, 2D Mater., 4, 035022 (2017). [DOI: https://doi.org/10.1088/2053-1583/aa805e]
  28. Z. D. Luo, X. Xia, M. M. Yang, N. R. Wilson, A. Gruverman, and M. Alexe, ACS Nano, 14, 746 (2020). [DOI: https://doi.org/10.1021/acsnano.9b07687]
  29. X. Zhu and W. D. Lu, ACS Nano, 12, 1242 (2018). [DOI: https://doi.org/10.1021/acsnano.7b07317]
  30. J. Gong, H. Wei, Y. Ni, S. Zhang, Y. Du, and W. Xu, Mater. Today Phys., 21, 100540 (2021). [DOI: https://doi.org/10.1016/j.mtphys.2021.100540]
  31. H. Duan, L. Liang, Z. Wu, H. Zhang, L. Huang, and H. Cao, ACS Appl. Mater. Interfaces, 13, 30165 (2021). [DOI: https://doi.org/10.1021/acsami.1c05396]
  32. C. Gao, H. Yang, E. Li, Y. Yan, L. He, H. Chen, Z. Lin, and T. Guo, ACS Photonics, 8, 3094 (2021). [DOI: https://doi.org/10.1021/acsphotonics.1c01167]
  33. C. Yang, J. Qian, S. Jiang, H. Wang, Q. Wang, Q. Wan, P.K.L. Chan, Y. Shi, and Y. Li, Adv. Opt. Mater., 8, 2000153 (2020). [DOI: https://doi.org/10.1002/adom.202000153]
  34. D. Hao, J. Zhang, S. Dai, J. Zhang, and J. Huang, ACS Appl. Mater. Interfaces, 12, 39487 (2020). [DOI: https://doi.org/10.1021/acsami.0c10851]