DOI QR코드

DOI QR Code

A Review on Thermoelectric Technology: Conductive Polymer Based Thermoelectric Materials

  • Park, Dabin (School of Chemical Engineering & Materials Science, Chung-Ang University) ;
  • Kim, Jooheon (School of Chemical Engineering & Materials Science, Chung-Ang University)
  • Received : 2022.03.06
  • Accepted : 2022.03.27
  • Published : 2022.05.01

Abstract

Thermoelectric (TE) heating and cooling devices, which are able to directly convert thermal energy into electrical energy and vice versa, are effective and have exhibited a potential for energy harvesting. With the increasing consumer demands for various wearable electronics, organic-based TE composite materials offer a promise for the TE devices applications. Conductive polymers are widely used as flexible TE materials replacing inorganic materials due to their flexibility, low thermal conductivity, mechanical flexibility, ease of processing, and low cost. In this review, we briefly introduce the latest research trends in the flexible TE technology and provide a comprehensive summary of specific conductive polymer-based TE material fabrication technologies. We also summarize the manufacture for high-efficiency TE composites through the complexation of a conductive polymer matrix/inorganic TE filler. We believe that this review will inspire further research to improve the TE performance of conductive polymers.

Keywords

Acknowledgement

This work was supported by the MSIT (Ministry of Science and ICT), Korea, under the ITRC (Information Technology Research Center) support program (IITP-2021-2020-0-01655) supervised by the IITP (Institute of Information & Communications Technology Planning & Evaluation).

References

  1. N. Sezer and M. Koc, Nano Energy, 80, 105567 (2021). [DOI: https://doi.org/10.1016/j.nanoen.2020.105567]
  2. H. C. Song, S. W. Kim, H. S. Kim, D. G. Lee, C. Y. Kang, and S. Nahm, Adv. Mater., 32, 2002208 (2020). [DOI: https://doi.org/10.1002/adma.202002208].
  3. Y. Guo, J. Wang, S. Shinde, X. Wang, Y. Li, Y. Dai, J. Ren, P. Zhang, and X. Liu, RSC Adv., 10, 25874 (2020). [DOI: https://doi.org/10.1039/D0RA05234E]
  4. F. Ma, C. Fu, J. Yang, and Q. Yang, J. Energy Eng., 146, 04019034 (2020). [DOI: https://doi.org/10.1061/(ASCE)EY.1943-7897.0000640]
  5. Y. Liu, N. Sun, J. Liu, Z. Wen, X. Sun, S. T. Lee, and B. Sun, ACS Nano, 12, 2893 (2018). [DOI: https://doi.org/10.1021/acsnano.8b00416]
  6. H. Sharma, A. Haque, and Z. A. Jaffery, J. Renewable Sustainable Energy, 10, 023704 (2018). [DOI: https://doi.org/10.1063/1.5006619]
  7. X. L. Shi, J. Zou, and Z. G. Chen, Chem. Rev., 120, 7399 (2020). [DOI: https://doi.org/10.1021/acs.chemrev.0c00026]
  8. Y. Wang, L. Yang, X. L. Shi, X. Shi, L. Chen, M. S. Dargusch, J. Zou, and Z. G. Chen, Adv. Mater., 31, 1807916 (2019). [DOI: https://doi.org/10.1002/adma.201807916]
  9. G. J. Snyder and E. S. Toberer, Nat. Mater., 7, 105 (2008). [DOI: https://doi.org/10.1038/nmat2090]
  10. M. Zebarjadi, K. Esfarjani, M. S. Dresselhaus, Z. F. Ren, and G. Chen, Energy Environ. Sci., 5, 5147 (2012). [DOI: https://doi.org/10.1039/C1EE02497C]
  11. Q. Zhang, Y. Sun, W. Xu, and D. Zhu, Adv. Mater., 26, 6829 (2014). [DOI: https://doi.org/10.1002/adma.201305371]
  12. K. Biswas, J. He, I. D. Blum, C. I. Wu, T. P. Hogan, D. N. Seidman, V. P. Dravid, and M. G. Kanatzidis, Nature, 489, 414 (2012). [DOI: https://doi.org/10.1038/nature11439]
  13. J. Y. Oh, J. H. Lee, S. W. Han, S. S. Chae, E. J. Bae, Y. H. Kang, W. J. Choi, S. Y. Cho, J. O. Lee, H. K. Baik, and T. I. Lee, Energy Environ. Sci., 9, 1696 (2016). [DOI: https://doi.org/10.1039/C5EE03813H]
  14. P. Nan, A. Li, L. Cheng, K. Wu, Z. Liang, F. Lin, C. Fu, T. Zhu, and B. Ge, Mater. Today Phys., 21, 100524 (2021). [DOI: https://doi.org/10.1016/j.mtphys.2021.100524]
  15. S. Han, Z. Zhou, C. Sheng, R. Hu, H. Yuan, Q. Tang, and H. Liu, Mater. Today Phys., 21, 100560 (2021). [DOI: https://doi.org/10.1016/j.mtphys.2021.100560]
  16. M. Guo, J. Zhu, F. Guo, Q. Zhang, W. Cai, and J. Sui, Mater. Today Phys., 15, 100270 (2020). [DOI: https://doi.org/10.1016/j.mtphys.2020.100270]
  17. D. Park, H. Ju, and J. Kim, J. Alloys Compd., 748, 305 (2018). [DOI: https://doi.org/10.1016/j.jallcom.2018.03.176]
  18. H. Ju, M. Kim, and J. Kim, Chem. Eng. J., 275, 102 (2015). [DOI: https://doi.org/10.1016/j.cej.2015.04.042]
  19. H. Ju and J. Kim, Dalton Trans., 44, 11755 (2015). [DOI: https://doi.org/10.1039/C5DT00897B]
  20. D. Park, H. Ju, and J. Kim, Ceram. Int., 43, 11156 (2017). [DOI: https://doi.org/10.1016/j.ceramint.2017.05.163]
  21. C. Fu, S. Bai, Y. Liu, Y. Tang, L. Chen, X. Zhao, and T. Zhu, Nat. Commun., 6, 8144 (2015). [DOI: https://doi.org/10.1038/ncomms9144]
  22. L. Huang, Q. Zhang, B. Yuan, X. Lai, X. Yan, and Z. Ren, Mater. Res. Bull., 76, 107 (2016). [DOI: https://doi.org/10.1016/j.materresbull.2015.11.032]
  23. T. Zhu, C. Fu, H. Xie, Y. Liu, and X. Zhao, Adv. Energy Mater., 5, 1500588 (2015). [DOI: https://doi.org/10.1002/aenm.201500588]
  24. S. W. Kim, Y. Kimura, and Y. Mishima, Intermetallics, 15, 349 (2007). [DOI: https://doi.org/10.1016/j.intermet.2006.08.008]
  25. T. Liu, C. Wang, J. Hou, C. Zhang, H. Chen, H. He, N. Wang, H. Wu, and G. Cao, Small, 12, 5146 (2016). [DOI: https://doi.org/10.1002/smll.201601616]
  26. I. Terasaki, Phys. B, 328, 63 (2003). [DOI: https://doi.org/10.1016/S0921-4526(02)01810-0]
  27. B. Zhan, Y. Liu, X. Tan, J. L. Lan, Y. H. Lin, and C. W. Nan, J. Am. Ceram. Soc., 98, 2465 (2015). [DOI: https://doi.org/10.1111/jace.13619]
  28. M. Kim, D. Park, and J. Kim, J. Alloys Compd., 851, 156905 (2021). [DOI: https://doi.org/10.1016/j.jallcom.2020.156905]
  29. D. Park, H. Ju, and J. Kim, Ceram. Int., 45, 16969 (2019). [DOI: https://doi.org/10.1016/j.ceramint.2019.05.245]
  30. D. Park, H. Ju, and J. Kim, Polymers, 12, 777 (2020). [DOI: https://doi.org/10.3390/polym12040777]
  31. Q. Yao, Q. Wang, L. Wang, and L. Chen, Energy Environ. Sci., 7, 3801 (2014). [DOI: https://doi.org/10.1039/C4EE01905A]
  32. J. Chen, L. Wang, X. Gui, Z. Lin, X. Ke, F. Hao, Y. Li, Y. Jiang, Y. Wu, X. Shi, and L. Chen, Carbon, 114, 1 (2017). [DOI: https://doi.org/10.1016/j.carbon.2016.11.074]
  33. H. J. Lee, G. Anoop, H. J. Lee, C. Kim, J. W. Park, J. Choi, H. Kim, Y. J. Kim, E. Lee, S. G. Lee, Y. M. Kim, J. H. Lee, and J. Y. Jo, Energy Environ. Sci., 9, 2806 (2016). [DOI: https://doi.org/10.1039/C5EE03063C]
  34. Z. Golsanamlou, S. I. Vishkayi, M. B. Tagani, and H. R. Soleimani, Chem. Phys. Lett., 594, 51 (2014). [DOI: https://doi.org/10.1016/j.cplett.2014.01.023]
  35. H. Shi, C. Liu, J. Xu, H. Song, B. Lu, F. Jiang, W. Zhou, G. Zhang, and Q. Jiang, ACS Appl. Mater. Interfaces, 5, 12811 (2013). [DOI: https://doi.org/10.1021/am404183v]
  36. H. Kang, L. Xu, Y. Cai, Y. Liu, F. Jiang, J. Xu, and W. Zhou, Eur. Polym. J., 144, 110208 (2021). [DOI: https://doi.org/10.1016/j.eurpolymj.2020.110208]
  37. X. Cao, M. Zhang, Y. Yang, H. Deng, and Q. Fu, Compos. Commun., 27, 100869 (2021). [DOI: https://doi.org/10.1016/j.coco.2021.100869]
  38. S. Xu, M. Hong, X. L. Shi, Y. Wang, L. Ge, Y. Bai, L. Wang, M. Dargusch, J. Zou, and Z. G. Chen, Chem. Mater., 31, 5238 (2019). [DOI: https://doi.org/10.1021/acs.chemmater.9b01500]
  39. Y. Wang, M. Hong, W. D. Liu, X. L. Shi, S. D. Xu, Q. Sun, H. Gao, S. Lu, J. Zou, and Z. G. Chen, Chem. Eng. J., 397, 125360 (2020). [DOI: https://doi.org/10.1016/j.cej.2020.125360]
  40. E. J. Bae, Y. H. Kang, C. Lee, and S. Y. Cho, J. Mater. Chem. A, 5, 17867 (2017). [DOI: https://doi.org/10.1039/C7TA04280A]
  41. P. He, S. Shimano, K. Salikolimi, T. Isoshima, Y. Kakefuda, T. Mori, Y. Taguchi, Y. Ito, and M. Kawamoto, ACS Appl. Mater. Interfaces, 11, 4211 (2018). [DOI: https://doi.org/10.1021/acsami.8b14820]
  42. Y. Hu, F. Jiang, B. Lu, C. Liu, J. Hou, and J. Xu, Electrochim. Acta, 228, 361 (2017). [DOI: https://doi.org/10.1016/j.electacta.2017.01.019]
  43. W. Lee, C. T. Hong, O. H. Kwon, Y. Yoo, Y. H. Kang, J. Y. Lee, S. Y. Cho, and K. S. Jang, ACS Appl. Mater. Interfaces, 7, 6550 (2015). [DOI: https://doi.org/10.1021/acsami.5b00626]
  44. E. Lim, K. A. Peterson, G. M. Su, and M. L. Chabinyc, Chem. Mater., 30, 998 (2018). [DOI: https://doi.org/10.1021/acs.chemmater.7b04849]
  45. J. Y. Kim, J. H. Jung, D. E. Lee, and J. Joo, Synth. Met., 126, 311 (2002). [DOI: https://doi.org/10.1016/S0379-6779(01)00576-8]
  46. G. H. Kim, L. Shao, K. Zhang, and K. P. Pipe, Nat. Mater., 12, 719 (2013). [DOI: https://doi.org/10.1038/nmat3635]
  47. J. Luo, D. Billep, T. Waechtler, T. Otto, M. Toader, O. Gordan, E. Sheremet, J. Martin, M. Hietschold, D.R.T. Zahn, and T. Gessner, J. Mater. Chem. A, 1, 7576 (2013). [DOI: https://doi.org/10.1039/C3TA11209H]
  48. H. Ju and J. Kim, ACS Nano, 10, 5730 (2016). [DOI: https://doi.org/10.1021/acsnano.5b07355]
  49. H. Ju, D. Park, and J. Kim, Nanoscale, 11, 8502 (2019). [DOI: https://doi.org/10.1039/C9NR01345H].
  50. D. Park, M. Kim, and J. Kim, Dalton Trans., 50, 12424 (2021). [DOI: https://doi.org/10.1039/D1DT02297K]
  51. D. Park, M. Kim, and J. Kim, Polymers, 13, 210 (2021). [DOI: https://doi.org/10.3390/polym13020210]
  52. Y. W. Park, Y. S. Lee, C. Park, L. W. Shacklette, and R. H. Baughman, Solid State Commun., 63, 1063 (1987). [DOI: https://doi.org/10.1016/0038-1098(87)90662-4]
  53. Y. W. Park, J. S. Moon, M. K. Bak, and J. I. Jin, Synth. Met., 29, 389 (1989). [DOI: https://doi.org/10.1016/0379-6779(89)90323-8]
  54. E. Dalas, S. Sakkopoulos, and E. Vitoratos, J. Mater. Sci., 29, 4131 (1994). [DOI: https://doi.org/10.1007/BF00355982]
  55. G. Prunet, F. Pawula, G. Fleury, E. Cloutet, A. J. Robinson, G. Hadziioannou, and A. Pakdel, Mater. Today Phys., 18, 100402 (2021). [DOI: https://doi.org/10.1016/j.mtphys.2021.100402]
  56. J. Li, X. Tang, H. Li, Y. Yan, and Q. Zhang, Synth. Met., 160, 1153 (2010). [DOI: https://doi.org/10.1016/j.synthmet.2010.03.001]
  57. C. Nath, A. Kumar, Y. K. Kuo, and G. S. Okram, Appl. Phys. Lett., 105, 133108 (2014). [DOI: https://doi.org/10.1063/1.4897146]
  58. H. Ju, D. Park, and J. Kim, Polymer, 160, 24 (2019). [DOI: https://doi.org/10.1016/j.polymer.2018.11.036]
  59. M. Kuriakose, M. Depriester, R. Chan Yu King, F. Roussel, and A. Hadj Sahraoui, J. Appl. Phys., 113, 044502 (2013). [DOI: https://doi.org/10.1063/1.4788674]
  60. F. Roussel, R. Chan Yu King, M. Kuriakose, M. Depriester, A. Hadj-Sahraoui, C. Gors, A. Addad, and J. F. Brun, Synth. Met., 199, 196 (2015). [DOI: https://doi.org/10.1016/j.synthmet.2014.11.020]
  61. Y. Lu, Y. Song, and F. Wang, Mater. Chem. Phys., 138, 238 (2013). [DOI: https://doi.org/10.1016/j.matchemphys.2012.11.052]
  62. H. Ju, D. Park, and J. Kim, Chem. Eng. J., 356, 950 (2019). [DOI: https://doi.org/10.1016/j.cej.2018.09.106]
  63. H. Ju, D. Park, and J. Kim, ACS Appl. Mater. Interfaces, 10, 11920 (2018). [DOI: https://doi.org/10.1021/acsami.7b19667]
  64. C. Dun, C. A. Hewitt, H. Huang, D. S. Montgomery, J. Xu, and D. L. Carroll, Phys. Chem. Chem. Phys., 17, 8591 (2015). [DOI: https://doi.org/10.1039/C4CP05390G]
  65. C. Dun, C. A. Hewitt, H. Huang, J. Xu, C. Zhou, W. Huang, Y. Cui, W. Zhou, Q. Jiang, and D. L. Carroll, Nano Energy, 18, 306 (2015). [DOI: https://doi.org/10.1016/j.nanoen.2015.10.012]
  66. K. C. See, J. P. Feser, C. E. Chen, A. Majumdar, J. J. Urban, and R. A. Segalman, Nano Lett., 10, 4664 (2010). [DOI: https://doi.org/10.1021/nl102880k]
  67. Y. Wang, S. M. Zhang, and Y. Deng, J. Mater. Chem. A, 4, 3554 (2016). [DOI: https://doi.org/10.1039/C6TA01140C]
  68. D. Park, M. Kim, and J. Kim, J. Alloys Compd., 884, 161098 (2021). [DOI: https://doi.org/10.1016/j.jallcom.2021.161098]
  69. Y. Lu, Y. Qiu, Q. Jiang, K. Cai, Y. Du, H. Song, M. Gao, C. Huang, J. He, and D. Hu, ACS Appl. Mater. Interfaces, 10, 42310 (2018). [DOI: https://doi.org/10.1021/acsami.8b15252]
  70. Q. Meng, Q. Jiang, K. Cai, and L. Chen, Org. Electron., 64, 79 (2019). [DOI: https://doi.org/10.1016/j.orgel.2018.10.010]
  71. Y. Lu, Y. Ding, Y. Qiu, K. Cai, Q. Yao, H. Song, L. Tong, J. He, and L. Chen, ACS Appl. Mater. Interfaces, 11, 12819 (2019). [DOI: https://doi.org/10.1021/acsami.9b01718]
  72. L. Wang, Z. Zhang, L. Geng, T. Yuan, Y. Liu, J. Guo, L. Fang, J. Qiu, and S. Wang, Energy Environ. Sci., 11, 1307 (2018). [DOI: https://doi.org/10.1039/C7EE03617E]