DOI QR코드

DOI QR Code

유연다물체동적해석을 이용한 무도상교량 침목패드의 최적 강성 산정

Optimum Stiffness of the Sleeper Pad on an Open-Deck Steel Railway Bridge using Flexible Multibody Dynamic Analysis

  • 채수호 (한국교통대학교 철도융합기술연구소) ;
  • 김민수 (한국교통대학교 철도공학부) ;
  • 백인철 (한국철도공사 기술연구처) ;
  • 최상현 (한국교통대학교 철도공학부)
  • Chae, Sooho (Research Institute for Railway Convergence Technology, Korea National University of Transportation) ;
  • Kim, Minsu (School of Railroad Engineering, Korea National University of Transportation) ;
  • Back, In-Chul (Korea Railroad Co.) ;
  • Choi, Sanghyun (School of Railroad Engineering, Korea National University of Transportation)
  • 투고 : 2022.02.03
  • 심사 : 2022.02.09
  • 발행 : 2022.04.30

초록

레일장대화는 무도상교량의 소음, 진동, 충격 등의 문제점을 해결할 수 있는 경제적인 방안 중 하나이며, 최근 연동식 침목고정장치를 이용한 SSF 공법이 개발된 바 있다. 이 연구에서는 연동식 침목고정장치 적용 시 레일 높이 조정 및 열차 통과 시의 충격 흡수를 목적으로 교량침목 하부에 삽입되는 침목패드의 최적 연직강성을 결정하는 과정을 제시하였다. 침목패드의 최적 연직강성 결정을 위하여 관련 기존 기준을 검토하였으며, 유연다물체동적해석을 통하여 침목패드의 연직강성 변화에 따른 주행안전성, 승차감 및 궤도의 안전성에 대한 지표들과 교량 응답 변화를 검토하였다. 유연다물체동적해석은 상용프로그램인 ABAQUS와 VI-Rail을 이용하여 수행하였다. 수치해석은 30m 상로판형교에 대한 교량모델을 이용하여 수행하였으며, 침목패드의 연직강성이 7.5kN/mm ~ 240kN/mm로 변화할 때 ITX 새마을, KTX 및 화차 통과 시의 응답을 산정하였다. 수치해석에 적용된 궤도구성품 조건에서 침목패드의 최적 강성은 100kN/mm로 산정되었다.

Installing Continuous Welded Rail (CWR) is one of the economical ways to resolve the challenges of noise, vibration, and the open-deck steel railway bridge impact, and the SSF method using the interlocking sleeper fastener has recently been developed. In this study, the method employed for determining the optimum vertical stiffness of the sleeper pad installed under the bridge sleeper, which is utilized to adjust the rail height and absorb shock when the train passes when the interlocking sleeper fastener is applied, is presented. To determine the optimal vertical stiffness of the sleeper pad, related existing design codes are reviewed, and, running safety, ride comfort, track safety, and bridge vibration according to the change in the vertical stiffness of the sleeper pad are estimated via flexible multi-body dynamic analysis,. The flexible multi-body dynamic analysis is performed using commercial programs ABAQUS and VI-Rail. The numerical analysis is conducted using the bridge model for a 30m-long plate girder bridge, and the response is calculated when passing ITX Saemaeul and KTX vehicles and freight wagon when the vertical stiffness of the sleeper pad is altered from 7.5 kN/mm to 240 kN/mm. The optimum stiffness of the sleeper pad is calculated as 200 kN/mm under the conditions of the track components applied to the numerical analysis.

키워드

과제정보

이 연구는 국토교통과학기술진흥원 철도기술연구사업(20RTRP-B137951-04)과 2020년 한국교통대학교의 연구비 지원에 의해 수행되었습니다.

참고문헌

  1. Bae, Y.-H., Hwang, S.-H., Kim, E. (2015) Analysis of Draft European Standard on Under Sleepers Pads (USP) in Ballast Track, Proc. Spring Conference, The Korean Society for Railway, KSR2015S289.
  2. CEN (European Committee for Standardization). (2002) Eurocode: Basis of Structural Design, EN 1990:2002(E), Brussels, Belgium.
  3. Chae, S., Yoo, Y., Lim, C., Choi, S. (2019) Applicability Analysis of a Continuous Welded Rail Construction Method on an Open Deck Steel Railway Bridge Using Displacement Control, J. Korean Soc. Railw., 22(2), pp.158~168. https://doi.org/10.7782/jksr.2019.22.2.158
  4. Chae, S., Yoo, Y., Park, Y., Choi, S. (2018) Dynamic Response Analysis of a Ballastless Steel Plate, J. Korean Soc. Railw., 21(11), pp.1~12. https://doi.org/10.7782/JKSR.2018.21.1.1
  5. Choi, S., Chae, S., Kim, K., Back, I.-C. (2020a) Running Safety Analysis Considering Track Irregularities on an Open-deck Steel Plate Girder Bridge Using Finite Element Multibody Dynamicss, Dyn. Civil Struct., 2, pp.213~216.
  6. Choi, S., Jang, S.Y., Lim, N.-H., Moon, J. (2020b) Technology for Constructing Continuous Welded Rail on an Open Deck Steel Railway Bridge, Railw. J., 23(5), pp.8~12.
  7. Esveld, C. (2000) Modern Railway Track, MRT-Productions.
  8. Fan, Y.-T., Wu, W.-F. (2006) Dynamic Analysis and Ride Quality Evaluation of Railway Vehicles-Numerical Simulation and Field Test Verification, J. Mech., 22(1), pp.1~11. https://doi.org/10.1017/S1727719100000721
  9. Han, W.-S., Kim, Y.-T. (2017) Evaluation of Track Support Stiffness of Ballasted Track according to Applying De-Bonded Type of Under Sleeper Pad, J. Korean Soc. Urban Railw., 5(1), pp.761~770. https://doi.org/10.24284/JKOSUR.2017.03.5.1.761
  10. Hwang, S.-H. (2019) Overvicw of Train-Track Interaction and Some Examples of Its Analyses, J. Comput. Struct. Eng. inst. Korea, 32(1), pp.5~14.
  11. Janas, L. (2019) Railway Plate Girder Bridges as a Source of Noise Examples Selected, IOP Conf. Ser., Mater. Sci. & Eng., 471, 052014.
  12. Jiang, H., Gao, L. (2020) Analysis of the Vibration Characteristics of Ballastless Track on Bridges Using an Energy Method, Appl. Sci., 10, 2289. https://doi.org/10.3390/app10072289
  13. Johansson, A., Nielsen, J.C.O., Bolmsvik, R., Karlstrom, A., Lunden, R. (2008) Under Sleeper Pads - Influence on Dynamic Train-Track Interaction, Wear, 265, pp.1479~1487. https://doi.org/10.1016/j.wear.2008.02.032
  14. Kong, S.-Y., Kim, S.-J. (2007) A Study on the Optimum Stiffness of Concrete Slab Track, Proc. Spring Conference, The Korean Society for Railway, pp.1085~1090.
  15. KR (Korea National Railway) (2016) KR C-14030: Ballast Track Structure.
  16. KR (Korea National Railway) (2017) KR C-18080: Track-Bridge Interaction Analysis in Longitudinal Direction.
  17. KR (Korea National Railway) (2019) KR C-14060: Track Material Design.
  18. Lee, H.-D., Choi, S., Moon, J. (2021) Lateral Resistance Requirement of Girder-Sleeper Fastener for CWR Track on an Open-Deck Steel Plate Girder Bridge, Appl. Sci., 11(15), 6681. https://doi.org/10.3390/app11156681
  19. Lee, S.Y., Eom, M., Oh, S.J., Park, Y.G. (2006) A Behavior Analysis of Railway Steel Plate Girder Bridge in the Applying Resilient Panel Track System, Proc. Fall Conf., The Korean Society for Railway, pp.18~27.
  20. Miri, A., Thambiratnam, D.P., Chan, T. (2021) Thermal Challenges of Replacing Jointed Rails with CWR on Steel Railway Bridges, Journal of Constructional Steel Research, 121, 106627.
  21. Molatefi, H., Hecht, M., Kadivar, M.H. (2006) Critical Speed and Limit Cycles in the Empty Y25-Freight Wagon, J. Rail & Rapid Transit, 220(4), pp.347~359. https://doi.org/10.1243/09544097JRRT67
  22. MOLIT (Ministry of Land, Infrastructure and Transport) (2013) Regulation of Safety Standards for a Railway Vehicle.
  23. Ngamkhanong, C., Kaewunruen, S. (2020) Effects of Under Sleeper Pads on Dynamic Responses of Railway Prestressed Concrete Sleepers Subjected to High Intensity Impact Loads, Eng. Struct., 214, 110604. https://doi.org/10.1016/j.engstruct.2020.110604
  24. Park, C.-K., Kim, K.-H., Hong, J.-W., Shim, T.-W. (1998) Analysis of the Dynamic Stability for the K-TGV Using Vampire Program, Proc. Fall Conf., The Korean Society for Railway, pp.510~516.
  25. Park, J.-G., Koh, H.-I., Kang, Y.-S., Jeong, Y.-D., Yi, S.-T. (2019) Research on Vibration and Noise Characteristics of Steel Plate Girder Bridge with Embedded Rail Track System, J. Korea Inst. Struct. Maint. & Insp., 23(1), pp.94~101. https://doi.org/10.11112/JKSMI.2019.23.1.94
  26. Peng, Y., Sheng, X., Cheng, G. (2020) Modelling Track and Ground Vibrations for a Slab Ballastless Track as an Infinitely Long Periodic Structure Subject to a Moving Marmonic Load, J. Sound & Vib., 489, 115760. https://doi.org/10.1016/j.jsv.2020.115760
  27. RTRI (Railway Technical Research Institute) (2006) Design Standard and Commentary for Railway Structures - Displacement Limits.
  28. UIC (2009) UIC Code 518 OR: Testing and Approval of Railway Vehicles from the Point of View of Their Dynamic Behaviour - Safety - Track Fatigue - Running Behavior, 4th Ed.
  29. Um, J.-H., Yang, S.-C., Kang, Y.-S. (2001) Development of Resilient Sleeper for Reduction of Sound and Vibration in High Speed Railways, Proc. Annual Conf., Korean Society for Noise and Vibration Engineering (KSNVE), pp.1242~1248.
  30. Yang, S.-C., Noh, H.-C., Kang, Y.-S., Lee, J.-D. (2000) Development of Sleeper for High Speed Railway, Proc. Fall Conf., The Korean Society for Railway, pp.311~318.
  31. Zhai, W., Han, Z., Chen, Z., L ing, L ., Zhu, S. (2019) Train-Track-Bridge Dynamic Interaction: a State-of-the-Art Review, Int. J. Veh. Mech. & Mobil., 57(7), pp.984~1027.
  32. Zhou, J., Goodall, R., Ren, L., Zhang, H. (2009) Influences of Car Body Vertical Flexibility on Ride Quality of Passenger Railway Vehicles, J. Rail & Rapid Transit, 223(5), pp.461~471. https://doi.org/10.1243/09544097JRRT272