DOI QR코드

DOI QR Code

A study on content strategy for long-term exposure of YouTube's 'Trending'

유튜브 '인기급상승' 장기 노출을 위한 콘텐츠 전략에 관한 연구

  • Lee, Min-Young (Convergence Technology Management Innovation Center, Chungbuk National University / Department of BigData, Chungbuk National University) ;
  • Byun, Guk-Do (Department of Management, Chungbuk National University) ;
  • Choi, Sang-Hyun (Department of Management Information System, Chungbuk National University)
  • 이민영 (충북대학교 융합기술경영혁신센터, 충북대학교 빅데이터협동과정) ;
  • 변국도 (충북대학교 경영학부) ;
  • 최상현 (충북대학교 경영정보학과)
  • Received : 2022.01.25
  • Accepted : 2022.04.20
  • Published : 2022.04.28

Abstract

This study aimed to derive a YouTube content strategy that can be exposed to Trending for a long time by comparing the features of 20 channels in the short/long term using 'YouTube Trending' data in 2021. First, through Pearson's correlation analysis, we found that various factors such as 'the number of title or tag letters' related to long-term exposure, and set this as an index to compare features. As a result, 1)'video title' of about 40-45 letters without excessive special characters, 2)'video length' within 10 minutes, 3)'Video description' is effective when writing 2-3 sentences and adding SNS information or including 3 key tags. Also, it would be more effective if you set key tag pairs such as (먹방, mukbang), (역대급, 레전드) derived through text mining. Through this, the channel will spread globally, bringing various advantages, and will be used as an indicator to evaluate the globality of the channel.

본 연구는 2021년 1년간의 유튜브 인기급상승 데이터를 활용하여 장/단기노출 20개 채널의 특징을 비교함으로 인기급상승에 장기 노출될 수 있는 유튜브 콘텐츠 전략을 도출하고자 하였다. 먼저 피어슨 상관분석을 통해 제목 글자 수, 태그 수와 같은 여러 요소들이 장기노출과 연관성이 있음을 파악하고 이를 지표로 설정해 콘텐츠 특징을 비교분석하였다. 분석 결과, 1)과도한 특수문자를 사용하지 않은 약 40-45글자 정도의 '영상 제목', 2)10분 이내의 '영상 길이', 3)2-3문장, SNS 정보 기입, 3개 정도의 핵심 태그를 포함한 '영상 설명' 등의 콘텐츠 전략을 활용할 때 인기급상승에 장기 노출될 수 있음을 알 수 있었다. 또한, 텍스트마이닝을 통해 (먹방, mukbang), (역대급, 레전드) 등의 핵심 태그 쌍을 도출하였고, 본 태그를 동시에 설정한다면 더욱 효과적이라는 결과를 얻었다. 이러한 전략을 통해 콘텐츠가 인기급상승에 장기노출 된다면 채널은 세계적으로 확산되어 구독자, 조회 수 확보 등 다방면의 이점을 가져올 것이며, 기업 측면에서는 채널의 글로벌성을 평가할 수 있는 지표로 활용될 수 있을 것이다.

Keywords

Acknowledgement

This research was funded by 「Industrial Strategic Technology Development Program (p0013990, Convergence technology diffusion type Professional Human Resources Development Project)」 of the Ministry of Trade, Industry & Energy (MOTIE, Korea). 본 논문은 2022년 산업통상자원부 및 한국산업기술진흥원(KIAT)의 연구비에 의하여 지원되었음.

References

  1. J. Y. Park, J. E. Lim & J. S. Jang. (2018). Communication Strategies of YouTube Brand Channel Contents. Korean Advertising and Public Relations Journal, 20(2), 95-15. DOI : 10.16914/kjapr.2018.20.2.95
  2. S. H. Lee. (2019). The ripple effect and meaning of YouTube. Software Policy Research Institute. https://spri.kr/posts/view/22578?code=industry_trend
  3. Nasmedia. (2021). Internet usage behavior in 2021. Seoul : Nasmedia.
  4. Happist. (2021). Internet usage behavior in 2021, YouTube search increase & paid video or paid membership spread. Dreaming island. https://happist.com/579759
  5. H. J. Seo. (2018). The assessment and prospect of the era of creators. Korea Press Foundation
  6. J. W. Jeong, J. Y. Lee & C. S. Leem. (2019). An Analysis of Characteristics and User Reactivity by Video Categories on YouTube. Journal of Digital Contents Society, 20(12), 2573-2582. https://doi.org/10.9728/dcs.2019.20.12.2573
  7. C. A. Madrigal. (2019). The Reason Conspiracy Videos Work So Well on YouTube. The Atlantic. https://www.theatlantic.com/technology/archive/2019/02/reason-conspiracy-videos-work-so-wellyoutube/583282/
  8. H. S. Kim. (2020). Analysis of Popular YouTube Video Content using Data Mining. Journal of Digital Contents Society, 21(4), 673-681. https://doi.org/10.9728/dcs.2020.21.4.673
  9. YouTube support. (2022). YouTube's trending videos. YouTube support. https://support.google.com/youtube/answer/7239739?hl=ko
  10. Turtle Media Strategy Research Center. (2020). How the YouTube Algorithm Works. Turtle Media Strategy Lab. https://gobooki.net/
  11. X. Cheng, C. Dale & J. Liu. (2008, June). Statistics and social network of youtube videos. In 2008 16th Interntional Workshop on Quality of Service. (pp. 229-238). IEEE.
  12. M. Bartl. (2018). YouTube channels, uploads and views: A statistical analysis of the past 10 years. Convergence: The International Journal of Research into New Media Technologies, 24(1), 16-32. https://doi.org/10.1177/1354856517736979
  13. G. Chatzopoulou, C. Sheng & M. Faloutsos. (2010, March). A first step towards understanding popularity in YouTube. In 2010 INFOCOM IEEE Conference on Computer Communications Workshops. (pp. 1-6). San Diego, CA, USA : IEEE.
  14. E. J. Jeong, H. Y. Cho & M. J. Kang. (2019, May). A Study on the Interesting Factors of Youtube Channel for Generation Z. KSDS Conference Proceeding. (pp. 440-441). Korean Society of Design Science.
  15. H. J. Byun. (2018). Analyzes the Characteristics in the Contents Production and Usage Environment of YouTube and its Popular Channels; and Examination of its Implications. formative media studies, 21(4), 227-239.
  16. B. H. Lee. (2016). YouTube history analyzed in terms of revenue -YouTube and Creator media-channel's status to increase YouTube's commercial revenue-. art and media, 15(3), 117-146.
  17. D. C. An & S. H. Kim. (2012). Attitudes toward SNS Advertising: A Comparison of Blog, Twitter, Facebook, and YouTube. The Korean Journal of Advertising, 23(3), 53-84.
  18. E. J. Kim & S. C. Whang. (2019). A Study on Advertising Effect Depending on Type of Information Source and Displaying of Economic Support in Influencer Marketing : Focusing on Youtube. Journal of Digital Contents Society, 20(2), 297-306. https://doi.org/10.9728/dcs.2019.20.2.297
  19. J. Davidson, B. Liebald, J. Liu, P. Nandy, T. Van Vleet, U. Gargi & D. Sampath. (2010, September). The YouTube video recommendation system. In Proceedings of the fourth ACM conference on Recommender systems. (pp. 293-296). Barcelona, Spain : ACM.
  20. Y. S. Yun & H. U. Lee. (2016. March). Personal Broadcasting Platform Technology: Focusing on Afreeca TV and YouTube. Information and Communications Magazine, 33(4), 56-63.
  21. S. Y. Yoo & O. R. Jeong. (2015). The YouTube Video Recommendation Algorithm using Users" Social Category. The Korean Institute of Information Scientists and Engineers, 42(5), 664-670.
  22. J. Ahlquist. (2016). How YouTube is impacting current and future college students. DR. Josie Ahlquist. https://www.josieahlquist.com/2013/10/29/youtubecollege/
  23. K. S. Kim, H. J. Paek & J. Lynn. (2010). A content analysis of smoking fetish videos on YouTube: regulatory implications for tobacco control. Health communication, 25(2), 97-106. DOI : 10.1080/10410230903544415
  24. M. Dehghani, M. K. Niaki, I. Ramezani & R. Sali. (2016). Evaluating the influence of YouTube advertising for attraction of young customers. Computers in human behavior, 59, 165-172. DOI : 10.1016/j.chb.2016.01.037
  25. H. J. Jang. (2021). The Effect of YouTube Content Quality of the Mukbang Channel on Viewing Satisfaction: Focusing on the Moderating Effect of the Food Dietary Lifestyle. Culinary Science & Hospitality Research, 27(11), 206-216. https://doi.org/10.20878/CSHR.2021.27.11.019
  26. J. W. Lie & J. E. Yang. (2021). The Perception of YouTube Journalism by Entertainment News Producers: An Exploratory Study. Information Society & Media, 22(3), 29-54.
  27. Y. A. Sung. (2020). Comparative Analysis of Korean-Japan Popular YouTube Content -Based on Social Statistical Approach-. Journal of the Korea Convergence Society, 11(2), 167-174. https://doi.org/10.15207/JKCS.2020.11.2.167
  28. K. S. Kim. (2019, July). Improvement Method of Classification Rate in ML Antivirus systems using Kaggle Datasets. Proceedings of the Korean Society of Computer Information Conference. (pp.49-52). Seoul : The Korean Society Of Computer And Information.
  29. B. Jose & S. Abraham. (2017, July). Exploring the merits of nosql: A study based on mongodb. In 2017 International Conference on Networks & Advances in Computational Technologies (NetACT). (pp. 266-271). India Trivandrum : IEEE. DOI: 10.1109/NETACT.2017.8076778
  30. Minitab. (2022). Interpret the key results for Correlation Coefficient. Minitab. https://support.minitab.com/ko-kr/minitab/18/help-and-how-to/statistics/basic-statistics/how-to/correlation/interpret-the-results/key-results/
  31. G. Kader & C. Franklin. (2008). The evolution of Pearson's correlation coefficient. The Mathematics Teacher, 102(4), 292-299. DOI : 10.5951/MT.102.4.0292
  32. J. H. Lee & H. K. Lee. (2017). A Research on Real-time Analysis of Association Rules Using Hash Tags. Internet e-commerce research, 17(4), 105-117.
  33. Y. K. Yoon. (2016). A comparative study on User Interface Design for SNS Hashtag system. Journal of Korea Institute of Cultural Product & Design, 46, 103-113. DOI : 10.18555/kicpd.2016.46.1
  34. N. G. Kim, D. H. Lee, H. C. Choi. & W. William Xiu Shun. (2017). Investigations on Techniques and Applications of Text Analytics. Journal of the Korean Telecommunications Society, 42(2), 471-492. DOI : 10.7840/kics.2017.42.2.471
  35. YouTube support. (2022). Use hashtags to search for videos. YouTube support. https://support.google.com/youtube/answer/6390658?hl=ko
  36. J. Courtial, (1994). A coword analysis of scientometrics. Scientometrics, 31(3), 251-260. DOI : 10.1007/bf02016875
  37. I. D. Cho & N. G. Kim. (2011). Recommending Core and Connecting Keywords of Research Area Using Social Network and Data Mining Techniques. Journal of Intelligence and Information Systems, 17(1), 127-138. https://doi.org/10.13088/JIIS.2011.17.1.127
  38. D. B. Choi, W. S. Choi, S. H. Choi & J. H. Lee. (2020). Perception Survey about SMEs Employment of University Students in Chungbuk Area: Based on Text-mining. Asia Pacific Journal of Small Business, 42(4), 235-250. DOI : 10.36491/APJSB.42.4.9
  39. J. Y. Lee. (2014). A Comparative Study on the Centrality Measures for Analyzing Research Collaboration Networks. Journal of the Korean Society for Information Management, 31(3), 153-179. DOI : 10.36491/APJSB.42.4.9