DOI QR코드

DOI QR Code

An analysis of operation status depending on the characteristics of R&D projects in Sciences and Engineering universities

이공계 대학 연구과제 특성 별 운영 형태 현황

  • Lee, Sang-Soog (Department of Public Administration, Korea University) ;
  • Yoo, Inhyeok (AI solution team, Future Innovation Center, Hanwah Systems/ICT) ;
  • Kim, Jinhee (Center for University Innovation Support, Yonsei University)
  • Received : 2022.02.23
  • Accepted : 2022.04.20
  • Published : 2022.04.28

Abstract

This study aimed to understand the current status of science and engineering university(SEU) R&D operations depending on the research project characteristics(e.g., stages and characteristics), then provide implications for future university R&D support systems and related policies. Hence, an online survey targeting SEU R&D recipients was conducted between October 4th to November 5th, 2021. Analyzing 445 valid data using the Apriori algorithm, 16 association rules for R&D operation according to the research project characteristics show that regardless of research characteristics, SEU's R&D projects, particularly in applied research, were funded or operated under the leadership of government or public institutions. For basic research, individual researchers had a higher level of autonomy in determining research topics; yet, they had a short duration (3 years) and a unit of evaluation period of more than 3 years. These findings can be empirical evidence for revealing the relationship among various variables in operating SEUs' R&D.

본 연구는 이공계 대학 연구과제 특성(단계 및 성격)별 R&D 운영 현황을 파악하여 향후 대학 R&D 지원 체계와 연구정책에 시사점을 제공하고자 하였다. 이에 본 연구는 2021년 10월 4일부터 약 5주간 국내 이공계 대학 R&D 수령인을 대상으로 온라인 설문을 진행한 후, Apriori 알고리즘을 활용하여 445명의 유효데이터를 분석하였다. 그 결과, 기초(원천)단계 연구 10개(일반적인 연구 6개, 도전적인 연구 4개), 응용단계 연구 6개(일반적인 연구 5개, 도전적인 연구 1개) 등 총 16개의 연관규칙이 도출되었다. 또한, 이공계 대학 R&D는 연구과제의 특성과 무관하게 정부(발주처) 혹은 공공기관(연구비결정권) 등의 주도로 운영되는 공통점이 나타났으며, 특히 응용연구의 특징(단계 및 성격)과 높은 연관성이 있었다. 기초(원천)단계연구의 경우, 연구자에게 연구주제에 대한 자율성을 제공하였으나 3년 차라는 짧은 연구 기간과 3년 이상의 단위로 연구가 평가되는 특징이 있었다. 이러한 연구 결과는 이공계 대학 연구과제 특성에 따른 운영 형태를 다양한 변인 간의 연관성을 드러내는 실증적 근거로써 활용될 수 있다. 아울러, 본 연구는 향후 이공계 대학 R&D 운영 지원을 위한 정책적·재정적·운영적 지원의 개선 방향을 제시하였다.

Keywords

References

  1. G. B. Park. (2016). Science and technology personnel in the era of Research Capitalism. Science & Technology Policy, 26(3), 12-17.
  2. K. Park., H. Yang., E. J. Shin., & H. J. Seo. (2019). Role of University-Led R&D and Policy Directions. Sejong: STEPI.
  3. S. Yeon., S. Kim., J. S. Kim., & B. H. Lee. (2016). Impact Analysis of Government Subsidy Fluctuations on Basic Research Outputs: focused on the IT field. Journal of the Korean Contents Association. 16(5), 157-171. DOI : 10.5392/JKCA.2016.16.05.157
  4. P. D'Este., & P. Patel. (2007). University-industry linkages in the UK: What are the factors underlying the variety of interactions with industry?. Research Policy, 36(9), 1295-1313. DOI : 10.1016/j.respol.2007.05.002
  5. D. Stokes. (2011). Pasteur's Quandrant: Basic Science and Technological Innovation. Washington, DC: Brookings Institution.
  6. M. Kim., H. Lee., & T. Choi. (2011). Study on Budget Allocation System and Paradigm Shift of Management for Basic Research. Journal of Korea Technology Innovation Society, 14(2), 177-204.
  7. C. Pak., & B. Ku. (2016). An Analysis of Distributed Lag Effects of Expenditure by Type of R&D on Scientific Production: Focusing on the National Research Development Program. Journal of Korea Technology Innovation Society, 19(4), 687-719.
  8. Y. Hwang., S. H. Lee., K. Choi. (2019). The Impact of Public R&D Investment on Innovation and Financial Performance: Focusing on R&D Phases. Journal of Korea Technology Innovation Society, 22(4), 503-525. DOI : 10.35978/jktis.2019.08.22.4.503
  9. Y. H. Choi. (2005). Linking Technology Foresight with National R&D Program in the IT Sector. Journal of the Institute of Humanities &Social Sciences, 35(0), 117-158.
  10. S. Jun, (2014). A technology forecasting method using text mining and visual apriori algorithm. Appl. Math. Inf. Sci, 8(1L), 35-40. DOI : 10.12785/amis/081L05
  11. R. Agrawal., T. Imielinski., & A. Swami. (1993, June). Mining association rules between sets of items in large databases. The 1993 ACM SIGMOD International Conference on Management of Data. (pp. 207-216). Washington, D.C : ACM SIGMOD.
  12. K. M. You., & H. Y. Yang. (2008. December). Policy suggestions for establishing and promoting the concept of basic source research. KISTEP R&D focus (9), 6-16.
  13. D. Cetindamar., R. Phaal., & D. Probert. (2009). Understanding technology management as a dynamic capability: A framework for technology management activities. Technovation, 29(4), 237-246. DOI : 10.1016/j.technovation.2008.10.004
  14. K.H. Bong., & J. Park. (2018). A Study on Technological Innovation and Employment Performance from the Perspective of Process : Focused on Small and Medium Sized Enterprises. Journal of Korea Technology Innovation Society21(4), 1508-1535. DOI : 10.14400/JDC.2020.18.1.001
  15. K. H. Bong., J. Bae., & J. Park. (2019). An Empirical Study on the Correlation between R&D and Patent Performance by Innovation Actors. The Journal of Intellectual Property, 14(2), 167-192. DOI : 10.34122/jip.2019.06.14.2.167
  16. K. Lee. (2005). A Study on Devising a "General Plan for the Advancement of Basic Research". Chuncheongbuk-do: KISTEP.
  17. M. H. Lee. (2009). New strategies and Management System for activating creativebasic research in Korea. Sejong: STEPI.
  18. B. G. Jung., & T. Kim. (2021). What is the Challenging R&D in Public Sector? : the Properties and Policy Implications. Journal of Korea Technology Innovation Society, 24(3), 551-575. DOI : 10.35978/jktis.2021.2.24.1.551
  19. J. T. Trevors., G. H. Pollack., M. H. Saier., & L. Masson. (2012). Transformative research: definitions, approaches and consequences. Theory in biosciences, 131(2), 117-123. DOI: 10.1007/s12064-012-0154-3
  20. M. Hayrynen. (2007). Breakthrough Research: Funding for high risk research at the Academy of Finland. Helsinki: Academy of Finland.
  21. P. E. Stephan. (2012). How economics shapes science, Cambridge: Harvard University Press.
  22. G. Yoon., J. Kim., & D. Gong. (2015). A study on the outcome-focused performance management system: Does this system work?. Korean association for local government studies, 17(3), 27-54. UCI : G704-001865.2015.17.3.006
  23. B. A. Radin. (2006). Challenging the Performance Movement: Accountability Complexity and Democratic Values. Washington D.C.: Georgetown University Press
  24. Y. C. Kang. (2009). An analysis for normative directions of performance indicators in the public sector: Focus on central governments. Korean Association for policy sciences, 13(4). 121-141.