DOI QR코드

DOI QR Code

Mission of Social Enterprises in South Korea -A Topic Modeling and Social Network Analysis-

토픽모델링과 사회네트워크분석을 활용한 사회적기업의 미션 연구

  • Lee, Sae-Mi (Center for Regional Development, Chonnam National University) ;
  • Byeon, Jang-Seop (Center for Regional Development, Chonnam National University) ;
  • Choi, Ji-Hye (Center for Regional Development, Chonnam National University) ;
  • Brown, Alan Dixon (Center for Regional Development, Chonnam National University)
  • Received : 2022.01.24
  • Accepted : 2022.04.20
  • Published : 2022.04.28

Abstract

The study explores social enterprises' social goals by analysing their mission so as to better understand their perceptions of social problems. Based on the analysis, the study reconsiders the mission of the current era of the Korean social economy. Accordingly, self-disclosed social enterprise data were collected and analyzed using LDA topic modeling and social network analysis methods. Seven mission topics were extracted, and the network centering on key keywords was derived. The analysis results largely divided the social purposes of social enterprises into three categories: 'social purpose that social enterprises want to achieve', 'activities to achieve the purpose', and 'operation method to achieve the purpose'. The study is meaningful in that it emphasizes the importance of establishing and implementing social goals from the point of view of the social economy as well as realizing the economic value of social enterprises by analyzing their mission.

본 연구의 목적은 사회적기업의 미션 분석을 통해 사회적기업이 추구하는 사회적 목적을 탐색하여 사회적 문제에 대한 사회적기업의 인식을 파악하고, 이를 바탕으로 한국 사회적경제의 시대적 사명에 대해 재고하는 것이다. 이를 위해 사회적기업 자율공시자료를 수집하여 LDA 토픽모델링과 사회네트워크분석 방법을 사용하여 미션 토픽 7개를 추출하고 핵심 키워드를 중심으로 네트워크를 도출하였다. 분석결과, 사회적기업의 사회적 목적은 크게 세 가지로 '사회적 기업이 달성하고자 하는 사회적 목적', '목적을 달성하기 위한 활동 내용', '목적을 달성하기 위한 운영 방법'으로 나타났다. 본 연구는 사회적기업의 미션 분석을 통해 사회적기업의 경제적 가치 실현뿐만 아니라 사회적경제 관점에서 사회적 목적 수립 및 실천의 중요성을 강조하였다는 것에 의의가 있다.

Keywords

Acknowledgement

This work was supported by the Ministry of Education of the Republic of Korea and the National Research Foundation of Korea (NRF-2020S1A5B8104093).

References

  1. J. Defourny & M. Nessens. (2021). Economie sociale et solidaire: Socioeconomie du 3e secteur. trans. S. Y. Kim and H. S. Eum. Seoul: Bona Liber Publishing Cooperative Ltd.
  2. C. Borzaga & J. Defourny. (2001). The Emergence of Social Enterprise. New York : Oxford University Press.
  3. J. G. Dees & B. B. Anderson. (2006). Framing a theory of social entrepreneurship: Building on two schools of practice and thought. Research on social entrepreneurship, 1(3), 36-66.
  4. E. Skloot. (1987). Enterprise and Commerce in Non-profit Organizations. in W. W. Powell, The Non-profit Sector: a Research Handbook, New Haven : Yale University Press, 380-393.
  5. D. Young & L. M. Salamon. (2002). Commercialization, Social Ventures, and For-Profit Competition, in L. M. Salamon, The State of Nonprofit America, Washington DC : Brookings Institution, 423-446.
  6. D. J. David. (2003). Advances in the management of the craniosynostoses. ANZ Journal of Surgery, 73(11), 949-957. DOI : 10.1046/j.1445-2197.2003.02825.x
  7. S. Kemp & L. Dwyer. (2003). Mission statements of international airlines: a content analysis. Tourism Management, 24(6), 635-653. DOI : 10.1016/S0261-5177(03)00049-9
  8. A. Nicholls. (2006). Social Enterpreneurship. New Models of Sustainable Change. Oxford : Oxford University Press.
  9. J. G. Dees. (1998). The Meaning of Social Entrepreneurship, The Social Entrepreneurship Funders Working Group.
  10. Ministry of Employment and Labor. (2021). Manual for Voluntary Disclosure and Business Report of Social Enterprises.
  11. M. Steyvers & T. Griffiths. (2006). Probabilistic topic models. Latent Semantic Analysis: A Road to Meaning. T. Landauer, D. McNamara, S. Dennis, and W. Kintsch, eds. Lawrence Erlbaum.
  12. B. Lu, M. Ott, C. Cardie & B. K. Tsou (2011, December). Multi-aspect sentiment analysis with topic models. In 2011 IEEE 11th international conference on data mining workshops (pp. 81-88). IEEE.
  13. W. Zhao, J. Chen & W. Zen. (2015). Best practices in building topic models with LDA for mining regulatory textual documents. CDER 9th November.
  14. H. Ghezala, A. Chaibi & M. Naili (2017). Arabic topic identification based on empirical studies of topic models. Revue Africainede la Recherche enInformatique et Mathematiques Appliquees, 27.
  15. J. An, K. Ahn & M. Song. (2016). Text Mining Driven Content Analysis of Ebola on News Media and Scientific Publications. Journal of the Korean Library and Information Science, 50(2), 289-307. DOI : 10.4275/KSLIS.2016.50.2.289