DOI QR코드

DOI QR Code

A Study on the Trend of Stone Industry and Residue

석재 산업 및 부산물 동향 조사

  • Chea, Kwang-Seok (Forest Ecology Division, National Institute of Forest Science) ;
  • Lee, Young Geun (Forest Ecology Division, National Institute of Forest Science) ;
  • Koo, Namin (Forest Ecology Division, National Institute of Forest Science) ;
  • Youn, Hojoong (Forest Ecology Division, National Institute of Forest Science) ;
  • Lim, Jong-Hwan (Forest Ecology Division, National Institute of Forest Science)
  • 채광석 (국립산림과학원 산림생태연구과) ;
  • 이영근 (국립산림과학원 산림생태연구과) ;
  • 구남인 (국립산림과학원 산림생태연구과) ;
  • 윤호중 (국립산림과학원 산림생태연구과) ;
  • 임종환 (국립산림과학원 산림생태연구과)
  • Received : 2021.11.09
  • Accepted : 2021.12.27
  • Published : 2022.03.31

Abstract

Stone has been used for various purposes, such as for building stones, megaliths, ornamental stones, hunting and grinding throughout history. The global stone production amounted to around 153 million tons in 2018 excluding quarry waste, up 0.8% on year. Of them, stone residues accounted for 71%. The worldwide stone trading decreased 1.5 million tons to 56.5 million tons in 2018. The average price of stone was 34.1 USD per square meter, down 2.5% from the previous year. It's down 7% when only considering trading between the world's top twelve exporters. But in the three leading countries, Italy, Greece and Brazil, the price saw a sharp increase. In 2018, stone imports and exports totaled 815 million square meters, raising over 20 billion USD of revenue. Imports were largely led by six countries: China, Italy, Turkey, India, Brazil, Spain and Portugal, from largest to smallest.) In terms of stone use per 1,000 population, it was 117 square meters in 2001, and it increased to 264 square meters in 2017 and 266 square meters in 2018. The volume more than doubled during the period, but it has been declining slightly in recent years. China, India, Saudi Arabia and Belgium were the only countries that the stone use per 1,000 population exceeded 1,000 square meters. The increase rate was steepest in China, India and the United States, from largest to smallest. The global stone production is likely to grow to 69.85 million tons by 2025, despite the global economic downturn.

석재는 역사적으로 빌딩용 석재, 거석, 장식용 석재, 사냥 및 연마 등 다양한 용도로 사용된다. 세계 석재 생산은 채석 부산물을 제외하고 2018년 1억 5,300만톤 생산하여 전년도 대비 0.8% 증가한 것으로 나타났다. 석재 생산과 비례하여 석재 부산물은 석재 생산량의 71%를 차지한다. 석재 무역은 전년도 5,800만톤 보다 150만톤 감소한 5,650만톤이 거래되었다. 2018년 석재 무역에서 평균 가격은 2.5% 감소하였고, 석재 생산결과 세계 상위 12개 수출 국가 기준으로 약 7% 감소하여 34달러(USD/m2)로 나타났다. 석재 평균 가격 순위의 주요 3개국은 이탈리아, 그리스 및 브라질은 더욱 많은 가격 상승을 보여주었다. 2018년에 전체적으로 석재 수입과 수출은 8억 1,500만 m2이며, 200억달러(USD) 이상 수익이 발생했다. 석재 수입은 주로 6개 국가가 주도하여 중국, 이탈리아, 터키, 인도, 브라질, 스페인 및 포르투칼 순서로 많았다. 인구 천명당 세계 석재사용은 2001년 117 m2에서 2017년 264 m2, 2018년 266 m2로 증가했다. 석재 사용량은 2배 이상 증가 했고, 최근에 조금 감소하고 있으며 천명당 1,000 m2 이상 사용하는 국가는 유일하게 스위스, 한국, 사우디아라비아 및 벨기에이지만, 가장 많이 증가한 국가는 중국, 인도 및 미국 순이다. 국제 경기 침체에도 불구하고 석재 무역은 지속적으로 증가하여 2025년 6,985만톤으로 판단된다.

Keywords

References

  1. Ashmole, I. and Motloung, M., 2008, Dimension stone: the latest trends in exploration and production technology, proceedings of the international conference on surface mining, 5-8.
  2. Associazione Italiana Marmomacchine (AIM), 2020, Directory.
  3. Careddu, N., 2019, Dimension stones in the circular economy world Resour. policy 60, 243-245.
  4. Chea, K.S., Lee, Y.G., Youn, H.J., Koo, N.I. and Lim, J.H., 2021, A Study on the Status of Stone Exports and Importsaggregates (abstract), Proceedings of the Annual Joint Conference. the Mineralogical Society of Korea and the Petrological Society of Korea, 90-92.
  5. Hyun, J.K., 1996, A Study on the Statistics of domestic building stone industry, the Mineralogical Society of Korea and the Petrological Society of Korea, 121-127.
  6. Korea forest service (KFS), 2021, Preliminary research for establishment of comprehensive for stone industry promotion, reseach and deveiopment project report.
  7. Lee, A.L. and Koo, N.I., 2020, Comparison of physicochemical properties according to the sensitivity of forest soil to acdification in the republic of korea, J. Korean Soc. For. Sci, 2, 157-168.
  8. Lee, J.Y., Hong, S.S., Han, M., Kim, S.S., Kim, S.S., Kim, Y.J., Lee, J.W., LIM. G.J., Lee, G.J., Lee, H., Nam, W.H., Lee, H.I., Lee, B.C., Lee, K.S., Kim, D.H., Lee, O.S., Ji, S.W., Lee, D.G. and Kim, M.S., 2020, Planning for comprehensive management of industrial stones and natural aggregate resources, reseach and deveiopment project report, KIGAM (Korea institute of geoscience and mineral resources), 63-75.
  9. Marras, G., Bortolussi, A., Peretti, R., Careddu, 2017, Characterization methodology for re-using marble slurry in industrial applications, energy procedia, 125, 656-665. https://doi.org/10.1016/j.egypro.2017.08.277
  10. Park, H., Jeong, Y., Jun, Y. and Oh, J., 2016, Production of price-competitive bricks using a high volume of stone powder sludge waste and blast furnace slag through cementless CaO activation, Construction and Building Materials, 122, 343-353. https://doi.org/10.1016/j.conbuildmat.2016.06.088
  11. Rana, A., Kalla, P., Verma, H.K., Mohnot, 2016, Recycling of dimensional stone waste in concrete, journal of cleaner production, 135, 312-331. https://doi.org/10.1016/j.jclepro.2016.06.126
  12. Tozsin, G., Arol, A. I., Oztas, T. and Kalkan, E., 2014, Using marble wastes as a soil amendment for acidic soil neutralization, journal of cleaner production, 133, 374-377.
  13. Tozsin, G., Oztas, T., Arol, A.I., Kalkan, E. and Duyar, O., 2014, The effects of marble wastes on soil properties and hazelnet yield, journal of cleaner production, 81, 146-149. https://doi.org/10.1016/j.jclepro.2014.06.009
  14. Zichella, L., D.G.A., Bellopede, R., Marini, P., Padoan, E. and Passarella, I., 2020, Environmental impacts, management and potential recovery of residual sludge from the stone industry: The piedmont case, Resources Policy, 65, 101562. https://doi.org/10.1016/j.resourpol.2019.101562