DOI QR코드

DOI QR Code

Regulatory Effects of Chrysanthemi Zawadskii Herba on NO Production and Vascular Adhesion Molecule Expression

구절초(Chrysanthemi Zawadskii Herba)의 항염증 인자 생성 및 혈관부착인자 발현 억제 효과

  • Sohn, E.S. (Center for Global R&D Data Analysis, Korea Institute of Science and Technology Information) ;
  • Kim, S.H. (Department of Bio-Health Convergence, Kangwon National University) ;
  • Ha, C.W. (Department of Bio-Health Convergence, Kangwon National University) ;
  • Jang, S. (Department of Bio-Health Convergence, Kangwon National University) ;
  • Sohn, E.H. (Department of Bio-Health Convergence, Kangwon National University) ;
  • Chae, C.J. (Department of Liberal Arts, Korea National University of Agriculture and Fisheries) ;
  • Koo, H.J. (Department of Crops and Forestry, Korea National College of Agriculture & Fisheries)
  • 손은수 (한국과학기술정보연구원) ;
  • 김성혁 (강원대학교 바이오헬스융합학과) ;
  • 하창우 (강원대학교 바이오헬스융합학과) ;
  • 장소희 (강원대학교 바이오헬스융합학과) ;
  • 손은화 (강원대학교 바이오헬스융합학과) ;
  • 채철주 (국립한국농수산대학교 교양학부) ;
  • 구현정 (국립한국농수산대학교 작물산림학부)
  • Received : 2022.03.19
  • Accepted : 2022.04.05
  • Published : 2022.04.18

Abstract

The purpose of this study is to provide evidence for discovering functional materials through the anti-inflammatory efficacy screening of randomly selected medicinal herbs. We prepared 70% ethanol extracts from 10 herbs and evaluated for the inhibitory effect of NO production on LPS-stimulated mouse macrophage cell line Raw 264.7. As a result, it was confirmed that the Chrysanthemi Zawadskii Herba (CZ) extract had the highest effect of inhibiting NO production induced by LPS. We therefore measured and compared NO inhibitory effects at different concentrations (10, 50, 250 ㎍/mL) of 70% ethanol and water extract of CZ. It was observed that both ethanol and water treatment groups inhibited NO production in a concentration-dependent manner in both ethanol and water treatment groups. In particular, it was confirmed that the CZ 70% ethanol extract (99.97%) had a higher NO inhibitory effect than the water extract (93.32%) in the high concentration (250 ㎍/mL) treatment group. There was no effect of CZ extract on cell viability at all concentrations used in the experiment. Moreover, it was shown that CZ ethanol extract remarkably inhibited the expression of VCAM-1 induced by TNF-𝛼, and it was slightly decreased even by treatment with water extract. This study suggests that Chrysanthemi Zawadskii Herba has potential as a functional substance that regulates vascular inflammation.

본 연구에서는 시중에 유통되는 생약 10종 (금전초, 목천료, 냉초, 현초, 계심, 진피, 율초, 구절초, 총백, 고량강)을 무작위로 선정하여 생약의 생리활성 효과를 스크리닝하였다. 각 생약을 70% 에탄올로 추출한 다음 추출물의 마우스 대식세포에 대한 NO 생성 억제 효능을 확인한 결과, 구절초 추출물이 LPS에 의해 유도된 NO 생성을 억제하는 효과가 가장 높은 것으로 확인되었다. 따라서, 구절초 70% ethanol 및 물 추출물에 대한 농도별 NO 생성 억제 효능을 측정하였다. 구절초 추출물은 두 용매 추출물 모두에서 대식세포의 NO 조절 효과가 우수한 것으로 나타났으며, 70% ethanol 추출물의 고농도 (250 ㎍/mL) 처리군에서는 LPS에 의해 유도된 NO를 99% 이상 억제하는 것으로 확인되었다. 또한, 구절초 70% ethanol 및 물 추출물이 인체 대동맥 평활근 세포주 HASMCs에서 TNF-α에 의한 부착인자의 발현 억제 효능을 확인하였다. 그 결과, 구절초의 70% ethanol 추출물 및 물 추출물이 TNF-α로 자극된 인체 대동맥평활근 세포주 HASMC에서 세포 부착 인자의 발현을 억제하였으며, 이 결과는 구절초가 혈관 염증을 조절할 수 있는 가능성을 제시한다. 본 연구 결과는 구절초의 항염증 및 혈관 염증 조절 기능 소재로서 개발을 위한 기초 자료로 활용될 수 있을 것으로 사료된다.

Keywords

References

  1. Bosca L, Zeini M, Traves PG, Hortelano S. 2005. Nitric oxide and cell viability in inflammatory cells: a role for NO in macrophage function and fate. Toxicol. 208(2):249-258. https://doi.org/10.1016/j.tox.2004.11.035
  2. Cho BO, Shin JY, Kang HJ, Park JH, Hao S, Wang F, Jang SI. 2021. Anti-inflammatory effect of Chrysanthemum zawadskii, peppermint, Glycyrrhiza glabra herbal mixture in lipopolysaccharide-stimulated RAW264.7 macrophages. Mol Med Rep. 24(1):1791-2997.
  3. Choi JW, Park JC, Lee CK. 1997. Biologic activities of Lysimachiae Herba II-analgesic and antiinflammatory effects of ehtyl acetate fraction and a phenyl propanoid component, Nat Prod Sci. 3(2):135-140.
  4. Choi SJ, Kim JK, Jang JM, Lim SS. 2012. Inhibitory effect of the phenolic compounds from Geranium thunbergii on rat lens aldose reductase and galactitol formation. Korean J. Medicinal Crop Sc.i 20(4):222-230. https://doi.org/10.7783/KJMCS.2012.20.4.222
  5. Cook-Mills JM, Marchese ME, Abdala-Valencia H. 2011. Vascular cell adhesion molecule-1 expression and signaling during disease: regulation by reactive oxygen species and antioxidants. Antioxid Redox Signa.l 15(6):1607-1638. https://doi.org/10.1089/ars.2010.3522
  6. Deng J, Ren M, Dai X, Qu D, Yang M, Zhang T, Jiang B. 2015. Lysimachia christinae Hance regresses preestablished cholesterol gallstone in mice. J Ethnopharmacol. 166:102-108. https://doi.org/10.1016/j.jep.2015.03.031
  7. Gan RY, Kuang L, Xu XR, Zhang Y, Xia EQ, Song FL, and Li HB. 2010. Screening of natural antioxidants from traditional Chinese medicinal plants associated with treatment of rheumatic disease. Molecules 15(9): 5988-5997. https://doi.org/10.3390/molecules15095988
  8. Gao W, Zhang R, Jia W, Zhang J, Takaishi Y, Duan H. 2004. Immunosuppressive diterpenes from Veronicastrum sibiricum. Chem Pharm Bull (Tokyo) 52(1): 136-137. https://doi.org/10.1248/cpb.52.136
  9. Ghasemian M, Owlia S, Owlia MB. 2016. Review of anti-Inflammatory herbal medicines. Adv Pharmacol Sci. 2016: 9130979. https://doi.org/10.1155/2016/9130979
  10. Kim CW, Chang KJ, Kim YB, Kim DH, Chae CJ, Choi HG, Koo HJ. 2020. Anti-inflammatory and cytotoxic screening evaluation of macroalgae resources. J Prac Agri Fish Res. 22(2):69-79.
  11. Kim HS. 2017. Extracts of Chrysanthemum zawadskii attenuate oxidative damage to vascular endothelial cells caused by a highly reducing sugar. Cytotechnology. 69:915-924. https://doi.org/10.1007/s10616-017-0110-7
  12. Kim HY, Kim SS, Lee CK, Choi JW. 1996. Biological activities of Lysimachiae herba-(1)-effects of the pretreatment of Lysimachiae herba on the enzyme activities in galactosamine-intoxicated rats. Korean J Pharmacogn. 27(1):58-64.
  13. Kim TJ, Lee TR, Park HK. 1991. Simultaneous Determination of Chlorogenic Acid and Linarin in Chrysanthemum Sibircum Fisherby Liquid Chromatography. J Kor Chem Soc. 35(6):720-724.
  14. Kyung KH. 2011. Antimicrobial properties of allium species. Curr Opin Biotechnol. 23:1-6. https://doi.org/10.1016/j.copbio.2011.12.020
  15. Lee JS, Kim KA, Jeong SH, Lee SG, Park HJ, Kim NJ, Lim S. 2009. Anti-inflammatory, anti-nociceptive, and anti-psychiatric effects by the rhizomes of Alpinia officinarum on complete Freund's adjuvant-induced arthritis in rats. J Ethnopharmaco.l 126(2):258-264. https://doi.org/10.1016/j.jep.2009.08.033
  16. Mishra A, Bhatti R, Singh A, Singh IMP. 2009. Ameliorative effect of the cinnamon oil from Cinnamomum zeylanicum upon early stage diabetic nephropathy. Planta Med. 76:412-417. https://doi.org/10.1055/s-0029-1186237
  17. Mohammed MS, Osman WJA, Garelnabi EAE, Osman Z, Osman B, Khalid HS, Mohamed MA. 2014. Secondary metabolites as anti-inflammatory agents. J Phytopharmacol. 3(4):275-285. https://doi.org/10.31254/phyto.2014.3409
  18. Park EJ. 2016. Quality characteristics of muffin added with Actinidia polygama powder. Culi Sci & Hos Res. 22(2):125-135. https://doi.org/10.20878/cshr.2016.22.2.011011
  19. Park SW, Kim SH, Chung SK. 1995. Antimutagenic effects and isolation of flavonoids from Humulus japonicus extract. Korean J Food Sci Technol. 27(6):897-901.
  20. Sin SH, Choi YY. 1982. Analysis of essential oil from Chrysanthemum sibricum and the comparision with essental oils from some Chrysanthemum sibricum spp. Kor J Pharmacog. 13(4):153-156.
  21. Sun C, Wu Z, Wang Z, Zhang H. 2015. Effect of ethanol/water solvents on phenolic profiles and antioxidant properties of Beijing propolis extracts. Evid Based Complement Alternat Med. 2015:595393.
  22. Yang EJ, Kim SI, Ku HY, Lee DS, Lee JW, Kim YS, Seong YH, Song KS. 2010. Syringin from stem bark of Fraxinus rhynchophylla protects Abeta(25-35)-induced toxicity in neuronal cells. Arch Pharm Res. 33(4):531-538. https://doi.org/10.1007/s12272-010-0406-z