DOI QR코드

DOI QR Code

Effect on Ferronickel Slag Powder in ASR

페로니켈 슬래그 미분말이 ASR에 미치는 영향

  • Kim, Min-Seok (Department of Civil Engineering, Kyung Hee University) ;
  • Seo, Woo-Ram (Department of Civil Engineering, Kyung Hee University) ;
  • Rhee, Suk-Keun (Department of Civil Engineering, Kyung Hee University)
  • 김민석 (경희대학교 사회기반시스템공학과) ;
  • 서우람 (경희대학교 사회기반시스템공학과) ;
  • 이석근 (경희대학교 사회기반시스템공학과)
  • Received : 2021.11.09
  • Accepted : 2022.01.03
  • Published : 2022.03.30

Abstract

Most of the existing research on ferronickel slag has focused on its potential as aggregate and fine aggregate, this study was conducted focusing on the potential of ferronickel slag powder as a concrete admixture. For concrete, which fly ash, blast furnace slag, and FSP were mixed with each 10 % type the reactivity was evaluated by applying ASTM C 1260 of the United States. As a result, compared with the control group, the expansion rate of fly ash decreased by 8.43 % and that of fine blast furnace slag powder decreased by 14.46 %, while the expansion rate of ferronickel slag decreased by 49.40 %. it was confirmed that ferronickel slag can sufficiently be replaced existing supplementary cementitious admixtures such as fly ash and blast furnace slag in terms of suppressing the reactivity of aggregates. However as a result of SEM analysis, ettringites were generated, and additional research about how it affects concrete is needed.

기존의 페로니켈 슬래그에 관한 연구는 대부분 골재 및 잔골재로서의 가능성에 초점이 맞추어져 수행되었으나 본 연구는 페로니켈 슬래그 미분말의 콘크리트 혼화재로서의 가능성에 주목하여 수행하였다. Fly ash, 고로슬래그 및 FPS 등을 각각 10 %씩 혼입한 콘크리트에 대해 미국의 ASTM C 1260을 준용하여 반응성을 평가하였다. 그 결과, 대조군과 비교해 Fly ash는 8.43 %, 고로슬래그 미분말은 14.46 % 팽창률이 감소했지만, 페로니켈 슬래그 미분말은 49.40 %의 팽창률 감소세를 보였다. 골재의 반응성 억제 측면에서 충분히 Fly ash, 고로슬래그 등 기존의 혼화재를 대체할 수 있음을 확인하였으나, SEM 분석결과 수많은 에트린자이트(ettringite)가 생성되었고 이것이 콘크리트에 어떤 영향을 주는지에 대한 추가적인 연구가 필요하다.

Keywords

Acknowledgement

본 연구는 2021년도 국토교통기술 촉진 연구 사업 도로 침수예방 및 비점오염 저감을 위한 배수 구조체 개발(과제 번호: 20CTAP-C152117-02) 연구비 지원으로 수행되었습니다.

References

  1. ASTM C1260-21. (2021). Standard Test Method for Potential Alkali Reactivity of Aggregates(Mortar-Bar Method), ASTM International, West Conshohocken, PA.
  2. Bernard, E., Lothenbach, B., Le Goff, F., Pochard, I., Dauzeresd, A. (2017a). Effect of magnesium on calcium silicate hydrate(CSH), Cement and Concrete Research, 97, 61-72. https://doi.org/10.1016/j.cemconres.2017.03.012
  3. Bernard, E., Lothenbach, B., Rentsch, D., Pochard, I., Dauzeresd, A. (2017b). Formation of magnesium silicate hydrates(MSH), Physics and Chemistry of the Earth, Parts A/B/C, 99, 142-157. https://doi.org/10.1016/j.pce.2017.02.005
  4. Cho, B.S., Lee, H.H., Choi, Y.W., Park D.C., Choi, Y.C. (2014). A study on performance of concrete using FeNi slag aggregate, Proceedings of Korea Concrete Institute, 26(2), 583-584.
  5. Cho, W.J., Kim, H.S., Ann, K.Y. (2020). A study on the hydration characteristics and fundamental properties of ternary blended cement using ferronickel slag, Journal of the Korean Recycled Construction Resources Institute, 8(1), 39-48. https://doi.org/10.14190/JRCR.2020.8.1.39
  6. FHWA/TX-06/0-4085-1. (2006). Alkali-Silica Reaction and Delayed Ettringite Formation in Concrete: A Literature Review.
  7. Hong, S.H., Han, S.H., Yun, K.K. (2006). A case study for deterioration due to alkali-silica reaction in the cement concrete pavement, Journal of the Korea Concrete Institute, 18(3), 355-360. https://doi.org/10.4334/JKCI.2006.18.3.355
  8. Jun, S.S., Lee, H.M., Jin, C.S. (2009). Microstructural study of mortar bar on akali-silica reaction by means of SEM and EPMA analysis, Journal of the Korea Concrete Institute, 21(4), 531-537. https://doi.org/10.4334/JKCI.2009.21.4.531
  9. KS F 2403. (2019). Standard Test Method for Making and Curing Concrete Specimens, Korea.
  10. KS F 2425. (2017). Standard Practice for Preparing Concrete Sample in the Laboratory, Korea.
  11. Kim, H.S., Lee, C.H., Ann, K.Y. (2019). Feasibility of ferronickel slag powder for cementitious binder in concrete mix, Construction and Building Materials, 207, 693-705. https://doi.org/10.1016/j.conbuildmat.2019.02.166
  12. Kim, S.K., Yun, K.K., Hur, I. (2012). Comparison of alkali-silica reactivity for mortar bar and concrete prism specimens using crushed aggregates in Korea, International Journal of Highway Engineering, 14(5), 93-99. https://doi.org/10.7855/IJHE.2012.14.5.093
  13. Kim, Y.U., Kim, D.B., Choi, S.J. (2018). An experimental study on the setting time and compressive strength of mortar using ferronickel slag powder, Journal of the Korea Institute of Building Construction, 18(6), 551-558. https://doi.org/10.5345/JKIBC.2018.18.6.551
  14. Lee, C.H., Park, S.S., Sim S.H., Oh, B.J. (2017). Experimental Study on The Resistance of Chloride Attack in Blended Siliceous- Based Slag Concrete, Proceedings of Korea Concrete Institute, 2017.5, 433-434.
  15. Lee, E.H., Jeong, C.I., Song, M.S., Lee, K.H. (2002). The effect of pH on the ettringite formation, Journal of the Korean Ceramic Society, 39(7), 699-703. https://doi.org/10.4191/KCERS.2002.39.7.699
  16. Lee, H.M., Hwang, J.Y. (2003). Ettringite/Thaumasite formation, stability and their effect on deterioration of concrete, Journal of the Mineralogical Society of Korea, 16(1), 75-90.
  17. Marchand, J., Odler, I., Skalny, J. (2003). Sulfate Attack on Concrete, SponPress, London, ISBN : 0419245502.