DOI QR코드

DOI QR Code

티타늄의 에어로졸 건조 윤활(ADL) 가공에서 온도 및 표면거칠기 분석

Analysis of Temperature and Surface Roughness in Aerosol Dry Lubrication (ADL) Machining for Titanium

  • 한정식 (창원대학교 산업시스템공학과) ;
  • 정종윤 (창원대학교 산업시스템공학과)
  • Jeong Sik, Han (Department of Industrial & Systems Engineering, Changwon National University) ;
  • Jong Yun, Jung (Department of Industrial & Systems Engineering, Changwon National University)
  • 투고 : 2022.11.02
  • 심사 : 2022.11.23
  • 발행 : 2022.12.31

초록

The function of coolant in machining is to reduce the frictional force in the contact area in between the tool and the material, and to increase the precision by cooling the work-piece and the tool, to make the machining surface uniform, and to extend the tool life. However, cutting oil is harmful to the human body because it uses chlorine-based extreme pressure additives to cause environmental pollutants. In this study, the effect of cutting temperature and surface roughness of titanium alloy for medical purpose (Ti-6Al-7Nb) in eco-friendly ADL slot shape machining was investigated using the response surface analysis method. As the design of the experiment, three levels of cutting speed, feed rate, and depth of cut were designed and the experiment was conducted using the central composite planning method. The regression expressions of cutting temperature and surface roughness were respectively obtained as quadratic functions to obtain the minimum value and optimal cutting conditions. The values from this formula and the experimental values were compared. As a result, this study makes and establishes the basis to prevent environmental pollution caused by the use of coolant and to replace it with ADL (Aerosol Dry Lubricant) machining that uses a very small amount of vegetable oil with high pressure.

키워드

참고문헌

  1. Akkus, H. and Yaka, H., Experimental and Statistical Investigation of the Effect of Cutting Parameters on Surface Roughness, Vibration and Energy Consumption in Machining of Titanium Ti-6Al-4V ELI (grade 5) Alloy, Measurement, 2021, Vol. 167, 108465. https://doi.org/10.1016/j.measurement.2020.108291
  2. Daniyan, I., Tlhabadira, I., Mpofu, K., and Adeodu, A., Investigating the Geometrical Effects of Cutting Tool on the Surface Roughness of Titanium Alloy (Ti6Al4V) during Milling Operation, Procedia CIRP, 2021, Vol. 99, pp. 157-164. https://doi.org/10.1016/j.procir.2021.03.097
  3. Edward, M., Trent, and Paul, K., Wright, Metal Cutting 4th, Butterworth Heinemann, 2000, pp. 97-100.
  4. El Aoud, B., Boujelbene, M., Boudjemline, A., Bayraktar, E., Ben Salem, S., and Elbadawi, I., Investigation of Cut Edge Microstructure and Surface Roughness obtained by Laser Cutting of Titanium Alloy Ti-6Al-4V, Materials Today: Proceedings, 2021, Vol. 44, pp. 2775-2780.
  5. Go, T.J., Kim, J.H., Park, Y.W., and Yang, S.H., Fundamentals of Machining and Machine Tools, Second Edition, Dong Myeong Sa, 2013, pp. 111-168.
  6. Han, J.S., and Jung, J.Y., The Characteristics of Titanium Alloy (Ti-6Al-7Nb) for Cutting Force in Aerosol Dry Lubrication (ADL) Machining, 2022 Spring Conference & International Symposium of Korean Society of Industrial and Systems Engineering, Jeju, Korea, 2022.6.23-25, p. 134.
  7. Han, J.S. and Jung, J.Y., ADL Milling Characteristics for the Analysis of Cutting Force of Titanium Machining, Journal of Korean Society of Industrial and Systems Engineering, 2022, Vol. 45, No 3, pp. 104-114. https://doi.org/10.11627/jksie.2022.45.3.104
  8. Infrared Thermography, H2640/h2630 Series, https://ww w.infrared.avio.co.jp.
  9. Jayarjun Kadam, B., and Mahajan, K. A., Optimization of Cutting Temperature in Machining of Titanium Alloy using Response Surface Method, Genetic Algorithm and Taguchi Method, 2021, Materials Today Proceedings, 2021, Vol. 47, pp. 6285-6290. https://doi.org/10.1016/j.matpr.2021.05.252
  10. Kikuchi, M., The Use of Cutting Temperature to Evaluate the Machinability of Titanium Alloys, Acta Biomaterialia, 2009, Vol. 5, Issue 2, pp. 770-775. https://doi.org/10.1016/j.actbio.2008.08.016
  11. Kistler, Milling with Stationary Dynamometer, CALST-M3-Typical Signal Curves 1/Bia/ Ed.10.14, pp. 11-15.
  12. Kumar Gupta, M., Korkmaz, M.E., Sarikaya, M., Krolczyk, G.M., and Gunay, M., In-Process Detection of Cutting Forces and Cutting Temperature Signals in Cryogenic assisted Turning of Titanium Alloys: An Analytical approach and Experimental Study, Mechanical Systems and Signal Processing, 2022, Vol. 169, 108772.
  13. Li, T., Long, H., Shi, T., Yang, J., and Duan, J., Cutting Temperature Measurement using a Novel Near-Infrared Two-Color Pyrometer under Dry and Wet Cutting of Ti-6Al-4V Alloy, Journal of Materials Processing Technology, 2022, Vol, 309, pp. 117751.
  14. Lim, Y.B., Design Expert, Minitab and Design of Experiments using R., Free Academy, 2020, pp. 298-337.
  15. Minton, T., Ghani, S., Sammler, F., Bateman, R., Furstmann, P., and Roeder, M., Temperature of Internally-Cooled Diamond-Coated Tools for Dry-Cutting Titanium, International Journal of Machine Tools and Manufacture, 2013, Vol.75, pp.27-35. https://doi.org/10.1016/j.ijmachtools.2013.08.006
  16. MITUTOYO, Surface Roughness/ Contour Measuring System, FORMTRACER SV-C3100/4100 Series, Mitutoyo America Corporation, Aurora IL, 2011, pp. 12-13.
  17. Park, J.S., Completion of New Mini-Tab Practice, Ire tech Mini Tab Division, 2005, pp. 618-656.
  18. Park, S.H., Design of Experiments, 3rd Edition, Min Young-Sa, 2012, pp. 453-504.
  19. Pittala, G. M., and Monno, M., A New Approach to the Prediction of Temperature of the Workpiece of Face Milling Operations of Ti-6Al-4V, Applied Thermal Engineering, 2011, Vol. 31, Issues 2-3, pp. 173-180.
  20. ROTHER, Technologie, Rother Techno Logic GmbH & Co, 2016, pp. 7-17.
  21. Seo, N.S., Machining Engineering, Dong Myeog Sa, 2010, pp. 197-211.
  22. Siva Surya, M., Optimization of Turning Parameters while Turning Ti-6Al-4V Titanium Alloy for Surface Roughness and Material Removal Rate using Response Surface Methodology, Materials Today: Proceedings, 2022, Vol. 62, pp. 3479-3484. https://doi.org/10.1016/j.matpr.2022.04.300
  23. Soler, D., Aristimuno, P., Garay, A., and Arrazola, P. J., Uncertainty of Temperature Measurements in Dry Orthogonal Cutting of Titanium Alloys, Infrared Physics & Technology, 2015, Vol. 71, pp. 208-216. https://doi.org/10.1016/j.infrared.2015.04.001
  24. Thirumalai, R., Techato, K., Chandrasekaran, M., Venkatapathy, K., and Seenivasan, M., Experimental Investigation during Turning Process of Titanium Material for Surface Roughness, Materials Today: Proceedings, 2021, Vol. 45, part 2, pp. 1423-1426. https://doi.org/10.1016/j.matpr.2020.07.213
  25. Zhuang, K., Gao, J., Ye, T., and Dai, X., Effect of Cutting Edge Radius on Cutting Force and Surface Roughness in Machining of Ti-6Al-4V, Procedia CIRP, 2022, Vol. 108, pp. 571-576.  https://doi.org/10.1016/j.procir.2022.03.090