DOI QR코드

DOI QR Code

Submanifolds of Codimension 3 in a Complex Space Form with Commuting Structure Jacobi Operator

  • Ki, U-Hang (The National Academy of Sciences) ;
  • Song, Hyunjung (Department of Mathematics Hankuk University of Foreign Studies)
  • Received : 2019.11.12
  • Accepted : 2021.02.24
  • Published : 2022.03.31

Abstract

Let M be a semi-invariant submanifold with almost contact metric structure (𝜙, 𝜉, 𝜂, g) of codimension 3 in a complex space form Mn+1(c) for c ≠ 0. We denote by S and R𝜉 be the Ricci tensor of M and the structure Jacobi operator in the direction of the structure vector 𝜉, respectively. Suppose that the third fundamental form t satisfies dt(X, Y) = 2𝜃g(𝜙X, Y) for a certain scalar 𝜃 ≠ 2c and any vector fields X and Y on M. In this paper, we prove that if it satisfies R𝜉𝜙 = 𝜙R𝜉 and at the same time S𝜉 = g(S𝜉, 𝜉)𝜉, then M is a real hypersurface in Mn(c) (⊂ Mn+1(c)) provided that $\bar{r}-2(n-1)c{\leq}0$, where $\bar{r}$ denotes the scalar curvature of M.

Keywords

Acknowledgement

The authors with to express their sincere thanks to the referee who gave us valuable suggestions and comments to improve the paper.

References

  1. A. Bejancu, CR-submanifolds of a Kahlermanifold I, Proc. Amer. Math. Soc., 69(1978), 135-142. https://doi.org/10.1090/S0002-9939-1978-0467630-0
  2. J. Berndt, Real hypersurfaces with constant principal curvatures in a complex hyperbolic space, J. Reine Angew. Math., 395(1989), 132-141.
  3. J. Berndt and H. Tamaru, Cohomogeneity one actions on non compact symmetric space of rank one, Trans. Amer. Math. Soc., 359(2007), 3425-3438. https://doi.org/10.1090/S0002-9947-07-04305-X
  4. D. E. Blair, G. D. Ludden and K. Yano, Semi-invariant immersion, Kodai Math. Sem. Rep., 27(1976), 313-319. https://doi.org/10.2996/kmj/1138847256
  5. T. E. Cecil and P. J. Ryan, Focal sets and real hypersurfaces in complex projective space, Trans. Amer. Math. Soc., 269(1982), 481-499. https://doi.org/10.1090/S0002-9947-1982-0637703-3
  6. T. E. Cecil and P. J. Ryan, Geometry of Hypersurfaces, Springer(2015).
  7. J. T. Cho and U-H. Ki, Real hypersurfaces of a complex projective space in terms of the Jacobi operators, Acta Math. Hungar, 80(1998), 155-167. https://doi.org/10.1023/A:1006585128386
  8. J. T. Cho and U-H. Ki, Real hypersurfaces in complex space forms with Reeb-flows symmetric Jacobi operator, Canadian Math. Bull., 51(2008), 359-371. https://doi.org/10.4153/CMB-2008-036-7
  9. J. Erbacher, Reduction of the codimension of an isometric immersion, J. Differential Geom., 5(1971), 333-340. https://doi.org/10.4310/jdg/1214429997
  10. J. I. Her, U-H. Ki and S. -B. Lee, Semi-invariant submanifolds of codimension 3 of a complex projective space in terms of the Jacobi operator, Bull. Korean Math. Soc., 42(2005), 93-119. https://doi.org/10.4134/BKMS.2005.42.1.093
  11. S. Kawamoto, Codimension reduction for real submanifolds of a complex hyperbolic space, Rev. Mat. Univ. Complut. Madrid., 7(1994), 119-128.
  12. U-H. Ki and H. Song, Jacobi operators on a semi-invariant submanifolds of codimension 3 in a complex projective space, Nihonkai Math J., 14(2003), 1-16.
  13. U-H. Ki, H. Song and R. Takagi, Submanifolds of codimension 3 admitting almost contact metric structure in a complex projective space, Nihonkai Math J., 11(2000), 57-86.
  14. M. Kimura, Real hypersurfaces and complex submanifolds in complex projective space, Trans. Amer. Math. Soc., 296(1986), 137-149. https://doi.org/10.1090/S0002-9947-1986-0837803-2
  15. S. Montiel and A. Romero, On some real hypersurfaces of a complex hyperbolic space, Geometriae Dedicata., 20(1986), 245-261. https://doi.org/10.1007/BF00164402
  16. R. Niebergall and P. J. Ryan, Real hypersurfaces in complex space form, in Tight and Taut submanifolds, Cambridge University Press : (1998(T. E. Cecil and S. -S. Chern eds.)), 233-305.
  17. M. Okumura, On some real hypersurfaces of a complex projective space, Trans. Amer. Math. Soc., 212(1973), 355-364. https://doi.org/10.2307/1998631
  18. M. Okumura, Normal curvature and real submanifold of the complex projective space, Geom. Dedicata., 7(1978), 509-517. https://doi.org/10.1007/BF00152072
  19. M. Okumura, Codimension reduction problem for real submanifolds of complex projective space, Colloz. Math. Soc. J'amos Bolyai, 56(1989), 574-585.
  20. H. Song, Some differential-geometric properties of R-spaces, Tsukuba J. Math., 25(2001), 279-298.
  21. R. Takagi, On homogeneous real hypersurfaces in a complex projective space, Osaka J. Math., 19(1973), 495-506.
  22. R. Takagi, Real hypersurfaces in a complex projective space with constant principal curvatures I, II, J. Math. Soc. Japan, 27(1975), 43-53, 507-516. https://doi.org/10.2969/jmsj/02710043
  23. Y. Tashiro, Relations between the theory of almost complex spaces and that of almost contact spaces (in Japanese), Sugaku, 16(1964), 34-61.
  24. K. Yano, and U-H. Ki, On (f, g, u, v, w, λ, µ, ν)-structure satisfying λ2 + µ2 + ν2 = 1, Kodai Math. Sem. Rep., 56(1978), 574-585.
  25. K. Yano and M. Kon, CR submanifolds of Kaehlerian and Sasakian manifolds, Birkhauser(1983).