DOI QR코드

DOI QR Code

The in vitro antioxidant, α-amylase and α-glucosidase inhibitory ability of different parts of passion fruit (Passiflora edulis) extract

패션프루트 부위별 추출물의 in vitro 항산화와 α-amylase 및 α-glucosidase 저해 활성

  • Joo Young, Jeon (Department of Food and Nutrition, Sookmyung Women's University) ;
  • Myung Hyun, Kim (Department of Food and Nutrition, Sookmyung Women's University) ;
  • Young Sil, Han (Department of Food and Nutrition, Sookmyung Women's University)
  • Received : 2022.08.29
  • Accepted : 2022.10.11
  • Published : 2022.12.31

Abstract

The purpose of this study is to investigate the various functionalities of the peels, pulps, and seeds of passion fruit. Proximate composition, mineral contents, phenolic acid contents, total polyphenols, total flavonoids, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activities, 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging activities, reducing power, α-glucosidase, and α-amylase inhibitory activities were measured for each part of passion fruit. Proximate composition analysis of the passion fruit indicated that moisture content contained (4.78-8.20%), carbohydrate (68.33-73.23%), protein (8.78-13.63%), fat (1.19-11.60%), and ash (1.51-8.80%). K, Ca, Na and Fe were the predominant mineral in the peels. P and Mg were the predominant mineral in the pulps. All the antioxidant activities (total polyphenols, total flavonoids, DPPH radical scavenging, ABTS radical scavenging, and reducing power) showed high results in the seeds. α-Glucosidase and α-amylase inhibitory activities IC50 were in the peels (5.59 and 63.16 mg/mL), in the pulps (3.80 and 31.90 mg/mL), and in the seeds (0.06 and 1.02 mg/mL). These results indicated that the pulps, peels, and seeds of passion fruit have value as natural antioxidants with the high quality functional components.

본 연구는 패션프루트 껍질, 과육, 씨의 다양한 기능성과 식품 소재로서의 활용 가능성을 알아보고자 패션프루트 부위별 일반성분, 무기질 등의 영양성분과 총 폴리페놀, 총 플라보노이드, DPPH 라디칼 소거능, ABTS 라디칼 소거능, 환원력 등의 항산화 활성, α-glucosidase 와 α-amylase 저해 활성 등을 측정하였다. 패션프루트 부위별 일반성분을 측정한 결과 수분 4.78-8.20%, 탄수화물 68.33-73.23% 단백질 8.78-13.63%, 지방 1.19-11.60%, 회분 1.51-8.80%이었다. 패션프루트 부위별 무기질 함량은 껍질에서 K, Ca, Na, Fe이 높게 나타났고 과육에서는 P, Mg이 높게 나타났다. 패션프루트 부위별 항산화 활성을 분석한 결과, 총 폴리페놀 함량은 껍질 17.57 mg GAE/g, 과육 3.41 mg GAE/g, 씨 116.99 mg GAE/g이었고, 총 플라보노이드는 껍질 6.28 mg RE/g, 과육 0.17 mg RE/g, 씨 21.34 mg RE/g이었다. DPPH 라디칼 소거활성(IC50)은 껍질 124.67 ㎍/mL, 과육 1597.74 ㎍/mL, 씨 28.15 ㎍/mL로 나타났다. ABTS 라디칼 소거활성(IC50)은 껍질 579.74 ㎍/mL, 과육 4126.29 ㎍/mL, 씨 83.00 ㎍/mL로 나타났다. 패션프루트의 씨, 껍질, 과육 순으로 항산화 활성이 좋게 나타났으며, 특히 씨가 높은 활성을 보였다. α-Glucosidase 저해 활성(IC50)은 껍질 5.59 mg/mL, 과육 3.80 mg/mL, 씨 0.06 mg/mL이었고 α-amylase 저해 활성(IC50)은 껍질 63.16 mg/mL, 과육 31.90 mg/mL, 씨 1.02 mg/mL로 나타나 씨가 가장 높은 활성을 나타내었다. 기능성이 확인된 패션프루트의 과육과 부산물인 껍질과 씨는 버려지는 자원으로서 활용 가능성이 높으며, 기능성이 향상된 식품으로서 발전 가능성이 높을 것으로 판단된다. 또한 과일 부산물의 활용은 환경 친화적인 면에서도 다양한 개발과 연구가 필요할 것으로 생각된다.

Keywords

References

  1. Hong HD, Cho CW, Rhee YK, Choi HD, Lee HS (2012) Status on technology development using immuno-modulating polysaccharide. Food Sci Ind 45: 2-11. doi: 10.23093/FSI.2012.45.1.2
  2. Han SH, Woo NRY, Lee SD, Kang MH (2006) Antioxidaitve and antibacterial activities of endemic plants extracts in korea. Korean J Medicinal Crop Sci 14: 49-55
  3. Hwang SJ, Park SJ, Kim JD (2013) Component analysis and antioxidant activity of Oenanthe javanica extracts. Korean J Food Sci Technol 45: 227-234. doi: 10.9721/KJFST.2013.45.2.227
  4. Lee SM, Kwon HY, Kim HJ, Lee BB, Cho KC, Jeong HJ, Jo HS (2021) Development of techniques for improving fruit high quality and overwintering cultivation in passionfruit (Passiflora edulis Sims) grown in the plastic film house. Rural Development Administration (RDA), Jeonju
  5. Lee MH, Kang SM (2018) The antioxidation effect of Passiflora edulis f. edulis rind extract and its influence on cell bioactivity. J Invest Cosmetol 14: 429-439 https://doi.org/10.15810/JIC.2018.14.4.004
  6. Matsui Y, Sugiyama K, Kamei M, Takahashi T, Suzuki T, Katagata Y, Ito T (2010) Extract of passion fruit (Passiflora edulis) seed containing high amounts of piceatannol inhibits melanogenesis and promotes collagen synthesis. J agric food chem 58: 11112-11118. doi: 10.1021/jf102650d
  7. Kulkarni SG, Vijayanand P (2010) Effect of extraction conditions on the quality characteristics of pectin from passion fruit peel (Passiflora edulis f. flavicarpa L.). LWT-Food Sci Technol 43: 1026-1031. doi: 10.1016/j.lwt.2009.11.006
  8. Yook HS, Kim KH, Jang SA (2010) Quality characteristics of grape pomace with different drying methods. J Korean Soc Food Sci Nutr 39: 1353-1358. doi: 10.3746/jkfn.2010.39.9.1353
  9. Teng H, He Z, Li X, Shen W, Wang J, Zhao D, Sun H, Xu X, Li C, Zha X (2022) Chemical structure, antioxidant and anti-inflammatory activities of two novel pectin polysaccharides from purple passion fruit (Passiflora edulia Sims) peel. J Mol Struct 1264: 133309. doi: 10.1016/j.molstruc.2022.133309
  10. Santos MS, Orlandelli RC, Polonio JC, dos Santos Riberiro MA, Sarragiotto MH, Azevedo JL, Pamphile JA (2017) Endophytes isolated from passion fruit plants: molecular identification, chemical characterization and antibacterial activity of secondary metabolites. J Appl Pharm Sci 7: 38-43
  11. Pelegrini PB, Noronha EF, Muniz MAR, Vasconcelos IM, Chiarello MD, Oliverira JTA, Franco OL (2006) An antifungal peptide from passion fruit (Passiflora edulis) seeds with similarities to 2S albumin proteins. Biochim Biophys Acta Proteins Proteom 1764: 1141-1146. doi: 10.1016/j.bbapap.2006.04.010
  12. Hartanto S, Lister INE, Fachrial E (2019) A comparative study of peel and seed extract of passion fruit (Passiflora edulis) as anti collagenase. ASRJETS 54: 42-48
  13. Rai S, Nagar JC, Mukim M (2022) Pharmacological and medicinal importance of passiflora edulis: a review. Int J Res Rev 9: 341-349. doi: 10.52403/ijrr.20220442
  14. An HJ, Lim CK, Jeon MK, Oh HS (2020) Characteristics of Growth according to Tree shape for Improving the Quality of Passion Fruit. Hortic Sci Technol 11: 142-142
  15. He X, Luan F, Yang Y, Wang Z, Zhao Z, Fang J, Wang M, Zuo M, Li Y (2020) Passiflora edulis: An insight into current researches on phytochemistry and pharmacology. Front pharmacol 11: 617. doi: 10.3389/fphar.2020.00617
  16. Tan Y, Chang SK, Zhang Y (2017) Comparison of α-amylase, α-glucosidase and lipase inhibitory activity of the phenolic substances in two black legumes of different genera. Food Chem 214: 259-268. doi: 10.1016/j.foodchem.2016.06.100
  17. AOAC (2010) Official method of analysis of AOAC. Assoiation of official analysis chemists. Gaithersburg
  18. AACC (2012) Approved methods of AACC. 10th ed. Method 40-75.01. Americal association for clinical cemistry. St. Paul
  19. Swain T, Hillis WE (1959) The phenolic constituents of Prunus domestica. I. - The quantitative analysis of phenolic constituents. J Sci Food Agric 10: 63-68. doi: 10.1002/jsfa.2740100110
  20. Um HJ, Kim GH (2007) Studies on the flavonoid compositions of Elsholtzia spp. Korean J Food Nutr 20: 103-107
  21. Blois MS (1958) Antioxidant determinations by the use of a stable free radical. Nature 181: 1199-1200. doi: 10.1038/1811199a0
  22. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26: 1231-1237. doi: 10.1016/S0891-5849(98)00315-3
  23. Oyaizu M (1986) Studies on products of browning reaction: antioxidant activities of products of browning reaction prepared from glucosamine. Jap J Nutr 986: 307-315. doi: 10.5264/eiyogakuzashi.44.307
  24. Zhu YP, Yin LJ, Cheng YQ, Yamaki K, Mori Y, Su YC, Li LT (2008) Effect of sources of carbon and nitrogen on production of α-glucosidase inhibitor by a newly isolate strain of Bacillus subtilis B2. Food Chem 109: 737-742. doi: 10.1016/j.foodchem.2008.01.006
  25. Bhandari MR, Anurakkun NJ, Hong G, Kawabata J (2008) α-Glucosidase and α-amylase inhibitory activities of Nepalese medicinal herb Parkhanbhed (Bergenia ciliata, Haw.). Food Chem 106: 247-252. doi: 10.1016/j.foodchem.2007.05.077
  26. Jeong KO (2018) Quality characteristics of tea thermally processed from passion fruit (Passiflora edulis Sims.) peel.Dissertation, Honam University
  27. Kim JH, Kim MJ, Oh HK, Chang MJ, Kim SH (2007) Seasonal variation of mineral nutrients in korean common fruits and begetables. J East Asian Soc Dietary Life 17: 860-875
  28. Ministry of Agriculture Food and Rural Affairs, National Institute of Agricultural Science (2016) Korean Food Composition Table, 9th revision, Sejong
  29. Vilkhu K, Mawson R, Simons L, Bates D (2008) Applications and opportunities for ultrasound assisted extraction in the food industry-A review. Innov Food Sci Emerg Technol 9: 161-169. doi: 10.1016/j.ifset.2007.04.014
  30. Melecchi MIS, Peres VF, Dariva C, Zini CA, Abad FC, Martinez MM, Caramao EB (2006) Optimization of the sonication extraction method of Hibiscus tiliaceus L. flowers. Ultrason sonochem 13: 242-250. doi: 10.1016/j.ultsonch.2005.02.003
  31. Bae YI, Chung YC, Shim KH (2002) Antimicrobial and antioxidant activities of various solvent extract from different parts of loquat (Eriobotrya japonica, Lindl.). Korean J Food Preserv 9: 97-101
  32. Park SJ, Oh DH (2003) Free radical scavenging effect of seed and skin extracts of black olympia grape(Vitis labruscana L.). Korean J Food Sci Technol 35: 121-124
  33. Tsao R (2010) Chemistry and biochemistry of dietary polyphenols. Nutrients 2: 1231-1246. doi: 10.3390/nu2121231
  34. Bohm H, Boeing H, Hempel J, Raab B, Kroke A (1998) Flavonols, flavone and anthocyanins as natural antioxidants of food and their possible role in the prevention of chronic diseases. Z Ernahrungswiss 37: 147-163. doi: 10.1007/pl00007376
  35. Rimando AM, Kalt W, Magee JB, Dewey J, Ballington JR (2004) Resveratrol, pterostilbene, and piceatannol in vaccinium berries. J Agric Food Chem 52: 4713-4719. doi: 10.1021/jf040095e
  36. Lee SK, Mbwambo ZH, Chung H, Luyengi L, Gamez EJ, Mehta RG, Kinghorn AD, Pezzuto JM (1998) Evaluation of the antioxidant potential of natural products. Comb chem high throughput screen 1: 35-46 https://doi.org/10.2174/138620730101220118151526
  37. Kim HS, Kang YH (2010) Antioxidant activity of ethanol extracts of non-edible parts (stalk, stem, leaf, seed) from Oriental Melon. Korean J Plant Res 23: 451-457
  38. Park JW, Lee TJ, Lee SO (2021) Anti-browning effect of plum seed extracts from different cultivars. J Korean Soc Food Sci Nutr 50: 362-368 https://doi.org/10.3746/jkfn.2021.50.4.362
  39. Kim DM, Kim KH, Kim YS, Koh JH, Lee KH, Yook HS (2012) A study on the development of cosmetic materials using unripe peaches seed extracts. J Korean Soc Food Sci Nutr 41: 110-115. doi: 10.3746/jkfn.2012.41.1.110
  40. Kang MH, Choi CS, Kim ZS, Chung HK, Min KS, Park CG, Park HW (2002) Antioxidative activities of ethanol extract prepared from leaves, seed, branch and aerial part of Crotalaria sessiflora L. Korean J Food Sci Technol 34: 1098-1102
  41. Morais DR, Rotta EM, Sargi SC, Schmidt EM, Bonafe EG, Eberlin MN, Sawaya ACHF, Visentainer JV (2015) Antioxidant activity, phenolics and UPLC-ESI (-)-MS of extracts from different tropical fruits parts and processed peels. Food Res Int 77: 392-399. doi: 10.1016/j.foodres.2015.08.036
  42. Chung HJ (2015) Comparative study of antioxidant activity of imported tropical and subtropical fruits. Korean J Food Preserv 22: 577-584. doi: 10.11002/kjfp.2015.22.4.577
  43. Kim MJ, Park EJ (2011) Feature analysis of different in vitro antioxidant capacity assays and their application to fruit and vegetable samples. J Korean Soc Food Sci Nutr 40: 1053-1062. doi: 10.3746/jkfn.2011. 40.7.1053
  44. Kwak JH, Choi GN, Park JH, Kim JH, Jeong HR, Jeong CH, Heo HJ (2010) Antioxidant and neuronal cell protective effect of purple sweet potato extract. J Agric Life Sci 44: 57-66
  45. Katsube T, Tabata H, Ohta Y, Yamasaki Y, Anuurad E, Shiwaku K, Yamane Y (2004) Screening for antioxidant activity in edible plant products: comparison of low-density lipoprotein oxidation assay, DPPH radical scavenging assay, and Folin-Ciocalteu assay. J Agric Food Chem 52: 2391-2396. doi: 10.1021/jf035372g
  46. Kim HY, Lim SH, Park YH, Ham HJ, Lee KJ, Park DS, Kim KH, Kim SM (2011) Screening of α-amylase, α-glucosidase and lipase inhibitory activity with Gangwon-do wild plants extracts. J Korean Soc Food Sci Nutr 40: 308-315. doi: 10.3746/jkfn.2011.40.2.308
  47. Kim JH, Kim MU, Cho YJ (2007) Isolation and identification of inhibitory compound from Crataegi fructus on α-amylase and α-glucosidase. J Appl Biol Chem 50: 204-209
  48. Puls W, Keup U (1973) Influence of an α-amylase inhibitor (BAY d 7791) on blood glucose, serum insulin and nefa in starch loading tests in rats, dogs and man. Diabetologia 9: 97-101. doi: 10.1007/BF01230687
  49. Liu S, Ai Z, Qu F, Chen Y, Ni D (2017) Effect of steeping temperature on antioxidant and inhibitory activities of green tea extracts against α-amylase, α-glucosidase and intestinal glucose uptake. Food Chem 234: 168-173. doi: 10.1016/j.foodchem.2017.04.151
  50. Dos santos FAR, Xavier JA, Da silva FC, Jose merlin JP, Goulart MOF, Vasantha rupasinghe HP (2022) Antidiabetic, antiglycation, and antioxidant activities of ethanolic seed extract of Passiflora edulis and Piceatannol In Vitro. Molecules 27: 4064. doi: 10.3390/molecules27134064
  51. Slavin JL, Lloyd B (2012) Health benefits of fruits and vegetables. Adv Nutr 3: 506-16. doi: 10.3945/an.112.002154
  52. Lee EY (2019) Intake of fruits for diabetics: Why and how much? J Korean Diabetes 20: 106-111. doi: 10.4093/jkd.2019.20.2.106
  53. Islam MR Haque AR, Kabir MR, Hasan MM, Khushe KJ, Hasan SM (2021) Fruit by-products: the potential natural sources of antioxidants and a-glucosidase inhibitors. J Food Sci Technol 58: 1715-1726. doi: 10.1007/s13197-020-04681-2