DOI QR코드

DOI QR Code

The allopolyploid origin of Euphorbia stevenii and E. boöphthona (Euphorbiaceae)

  • Ki-Ryong, PARK (Department of Environmental and Energy Engineering, Kyungnam University)
  • Received : 2022.11.15
  • Accepted : 2022.12.23
  • Published : 2022.12.31

Abstract

To elucidate the ancestry of the allopolyploids E. stevenii and E. boöphthona, I examined eleven isozyme loci and 24 morphological characters from 28 populations representing five related Euphorbia species from Australia. According to an analysis of genetic and morphological data, three diploid species differentiated recently, but two independent polyploid species are estimated to have differentiated a relatively long time ago. Fixed heterozygosity for most isozymes in E. stevenii and E. boöphthona strongly suggests that these two species are allopolyploids rather than autopolyploids. The isozyme profiles of E. stevenii indicate that it is an allopolyploid that evolved from interspecific hybridization between the diploid E. tannensis and unidentified or extinct tetraploid species. In addition, isozyme patterns strongly suggest that E. stevenii was one of the ancestors of E. boöphthona. However, E. boöphthona showed a large number of fixed alleles that were not detected in any other Australian Eremophyton species. The most likely hypothesis for the origin of E. boöphthona is that it was formed by hybridization and chromosomal doubling between an extinct diploid species and the hexaploid E. stevenii.

Keywords

Acknowledgement

This work was supported by grant from Korean Science and Engineering Foundation (KOSEF 981-0513-069-1).

References

  1. Acquaah, G. 1992. Practical Protein Electrophoresis for Genetic Research. Dioscorides Press, Portlandm, OR, 136 pp.
  2. Arnold, M. L. 1997. Natural Hybridization and Evolution. Oxford University Press, New York, 215 pp.
  3. Boisselier-Dubayle, M. C., J. Lambourdiere and H. Bischler. 1998. The leafy liverwort Porella baueri (Porellaceae) is an allopolyploid. Plant Systematics and Evolution 210: 175-197. https://doi.org/10.1007/BF00985667
  4. Coyne, J. A. and H. A. Orr. 2004. Speciation. Sinauer Associates, Sunderland, MA, 545 pp.
  5. Crawford, D. J. 1990. Plant Molecular Systematics: Macromolecular Approaches. John Wiley and Sons, New York, 388 pp.
  6. Forster, P. I. 1992. Euphorbia tannensis Spreng. in Australia. The Euphorbia Journal 8: 41-44.
  7. Gottlieb, L. D. 1981. Electrophoretic evidence and plant populations. Progress in Phytochemistry 7: 1-46. 
  8. Grant, V. 1981. Plant Speciation. Columbia University Press, New York, 564 pp.
  9. Hans, A. S. 1973. Chromosomal conspectus of the Euphorbiaceae. Taxon 22: 591-636. https://doi.org/10.2307/1218637
  10. Hassall, D. C. 1976. Numerical and cytotaxonomic evidence for generic delimitation in Australian Euphorbieae. Australian Journal of Botany 24: 633-640.
  11. Hassall, D. C. 1977. The genus Euphorbia in Australia. Australian Journal of Botany 25: 429-453.
  12. Nei, M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583-590. https://doi.org/10.1093/genetics/89.3.583
  13. Perry, B. A. 1943. Chromosome number and phylogenetic relations in the Euphorbiaceae. American Journal of Botany 30: 527-543.
  14. Rohlf, F. J. 1992. Numerical taxonomy and multivariate analysis system. Exeter Software, New York.
  15. Sneath, P. H. and R. R. Sokal. 1973. Numerical Taxonomy: The Principle and Practice of Numerical Classification. W.H. Freeman, San Francisco, CA, 573 pp.
  16. Soltis, D. E. and L. H. Rieseberg. 1986. Autopolyploidy in Tolmiea menziesii (Saxifragaceae): Genetic insights from enzyme electrophoresis. American Journal of Botany 73: 310-318. https://doi.org/10.2307/2444186
  17. Soltis, D. E., C. H. Haufler, D. C. Darrow and G. J. Gastony. 1983. Stach gel electrophoresis of ferns: A compilation of grinding buffers, gel and electrode buffers, and staining schedules. American Fern Journal 73: 9-27. https://doi.org/10.2307/1546611
  18. Sun, M. 1996. The allopolyploid origin of Spiranthes hongkongensis (Orchidaceae). American Journal of Botany 83: 252-260. https://doi.org/10.2307/2445944
  19. Swofford, D. L. and R. B. Selander. 1981. BIOSYS-1: A FORTRAN program for the comprehensive analysis of electrophoretic data in population genetics and systematics. Journal of Heredity 72: 281-283. https://doi.org/10.1093/oxfordjournals.jhered.a109497
  20. Urbatsch, L. E., J. D. Bacon, R. L. Hartman, M. C. Johnston, T. J. Jr. Watson and G. L. Webster. 1975. Chromosome numbers for North American Euphorbiaceae. American Journal of Botany 62: 494-500. https://doi.org/10.2307/2441957
  21. Weber, J. Z. 1986. Family Euphorbiaceae. In Flora of South Australia, Part II. Leguminosae - Rubiaceae. Jessop, J. P. and H. R. Toelken (eds.), South Australian Government Printing Division, Adelaide. Pp. 735-768.
  22. Weeden, N. F. and J. F. Wendel. 1989. Genetics of plant isozymes. In Isozymes in Plant Biology. Soltis, D. E. and P. S. Soltis (eds.), Dioscorides Press, Portland, OR. Pp. 46-72.
  23. Werth, C. R. 1989. The use of isozyme data for inferring ancestry of polyploidy species of Pteridophytes. Biochemical Systematics and Ecology 17: 117-130.  https://doi.org/10.1016/0305-1978(89)90069-0