• Title/Summary/Keyword: Euphorbia boophthona

Search Result 1, Processing Time 0.015 seconds

The allopolyploid origin of Euphorbia stevenii and E. boöphthona (Euphorbiaceae)

  • Ki-Ryong PARK
    • Korean Journal of Plant Taxonomy
    • /
    • v.52 no.4
    • /
    • pp.219-225
    • /
    • 2022
  • To elucidate the ancestry of the allopolyploids E. stevenii and E. boöphthona, I examined eleven isozyme loci and 24 morphological characters from 28 populations representing five related Euphorbia species from Australia. According to an analysis of genetic and morphological data, three diploid species differentiated recently, but two independent polyploid species are estimated to have differentiated a relatively long time ago. Fixed heterozygosity for most isozymes in E. stevenii and E. boöphthona strongly suggests that these two species are allopolyploids rather than autopolyploids. The isozyme profiles of E. stevenii indicate that it is an allopolyploid that evolved from interspecific hybridization between the diploid E. tannensis and unidentified or extinct tetraploid species. In addition, isozyme patterns strongly suggest that E. stevenii was one of the ancestors of E. boöphthona. However, E. boöphthona showed a large number of fixed alleles that were not detected in any other Australian Eremophyton species. The most likely hypothesis for the origin of E. boöphthona is that it was formed by hybridization and chromosomal doubling between an extinct diploid species and the hexaploid E. stevenii.