DOI QR코드

DOI QR Code

Effects of Thawing Conditions in Sample Treatment on the Chemical Properties of East Siberian Ice Wedges

동시베리아 얼음쐐기 시료의 해동방법이 시료의 화학적 특성분석에 미치는 영향

  • Subon, Ko (Department of Earth System Sciences, Yonsei University) ;
  • Jinho, Ahn (School of Earth and Environmental Sciences, Seoul National University) ;
  • Alexandre, Fedorov (Melnikov Permafrost Institute, Russian Academy of Science) ;
  • Giehyeon, Lee (Department of Earth System Sciences, Yonsei University)
  • 고수본 (연세대학교 지구시스템과학과) ;
  • 안진호 (서울대학교 지구환경과학부 ) ;
  • ;
  • 이기현 (연세대학교 지구시스템과학과)
  • Received : 2022.12.21
  • Accepted : 2022.12.26
  • Published : 2022.12.28

Abstract

Ice wedges are subsurface ice mass structures that formed mainly by freezing precipitation with airborne dust and surrounding soil particles flowed through the active layer into the cracks growing by repeating thermal contractions in the deeper permafrost layer over time. These ice masses characteristically contain high concentrations of solutes and solids. Because of their unique properties and distribution, the possibility of harnessing ice wedges as an alternative archive for reconstructing paleoclimate and paleoenvironment has been recently suggested despite limited studies. It is imperative to preserve the physicochemical properties of the ice wedge (e.g., solute concentration, mineral particles) without any potential alteration to use it as a proxy for reconstructing the paleo-information. Thawing the ice wedge samples is prerequisite for the assessment of their physicochemical properties, during which the paleo-information could be unintentionally altered by any methodological artifact. This study examined the effect of thawing conditions and procedures on the physicochemical properties of solutes and solid particles in ice wedge samples collected from Cyuie, East Siberia. Four different thawing conditions with varying temperatures (4 and 23℃) and oxygen exposures (oxic and anoxic) for the ice wedge sample treatment were examined. Ice wedge samples thawed at 4℃ under anoxic conditions, wherein biological activity and oxidation were kept to a minimum, were set as the standard thawing conditions to which the effects of temperature and oxygen were compared. The results indicate that temperature and oxygen exposure have negligible effects on the physicochemical characteristics of the solid particles. However, the chemical features of the solution (e.g., pH, electric conductivity, alkalinity, and concentration of major cations and trace elements) at 4℃ under oxic conditions were considerably altered, compared to those measured under the standard thawing conditions. This study shows that the thawing condition of ice wedge samples can affect their chemical features and thereby the geochemical information therein for the reconstruction of the paleoclimate and/or paleoenvironment.

얼음쐐기는 영구동토 지역의 토양층에서 관찰되는 얼음체로, 형성 당시의 강수 및 토양이 유입되어 형성되며, 높은 농도의 용질 및 고체함량을 가진다. 이러한 얼음쐐기는 그 형성 및 분포적 특성으로 인해 최근 고기후 및 고환경 복원을 위한 연구에 활용될 수 있는 가능성이 제시되고, 이에 대한 연구가 제한적으로 시작되고 있다. 하지만 얼음쐐기에 포함된 용질 및 고체 혹은 광물입자들을 고기후 및 고환경 복원 프록시로 사용하기 위해서는 이들의 물리화학적 특성 보존이 필수적이다. 만약 얼음쐐기 시료의 해동과정에 의한 물리화학적 특성 변화가 야기된다면, 이를 활용한 고기후 및 고환경 해석에 오류를 야기할 수 있다. 본 연구에서는 동시베리아 쑤야(Cyuie) 지역에서 채취된 얼음쐐기를 이용하여 해동조건이 얼음쐐기 내 용질 및 고체상에 미치는 영향을 조사하였다. 쑤야(Cyuie) 지역의 얼음쐐기 시료에 대해 해동온도와 산소유무를 고려하여 네 가지 해동조건(4℃-유산소, 4℃-무산소, 23℃-유산소 혹은 23℃-무산소)에서 회수된 용액 및 고체시료의 특성을 분석하였다. 온도와 산소의 영향이 가장 제한적일 것으로 예상되는 4℃-무산소 조건에서 측정된 결과를 기준으로 비교한 결과, 얼음쐐기 내 고체입자들에 대한 해동조건의 영향은 미미하였다. 반면, 용액의 화학적 특성(pH, 전기전도도, 알칼리도와 주양이온 및 미량원소의 농도)은 기준조건에 비해 4℃-유산소 조건에서 일관성 있게 유의미한 차이를 보였다. 본 연구결과, 얼음쐐기 시료의 해동조건에 따라 시료의 화학적 특성에 변화를 야기할 수 있으며, 이는 시료처리 방법 및 절차가 얼음쐐기를 이용한 고기후 및 고환경 복원 결과에 중요한 영향을 미칠 수 있음을 시사한다.

Keywords

Acknowledgement

이 논문은 정부(과학기술정보통신부)의 재원으로 한국연구재단해양극지기초원천개발사업(과제번호 2020M1A5A1110607) 및중견연구자지원사업(과제번호 2020R1A2C2010089)의 지원을 받아 수행되었습니다. 이 연구를 수행하는 과정에서 고체분석과 관련하여 많은 도움을 주신 미국 APS 12-BM-B 빔라인의 이성식 박사님께 감사드립니다.

References

  1. Boereboom, T., Samyn, D., Meyer, H. and Tison, J.L. (2013). Stable isotope and gas properties of two climatically contrasting (Pleistocene and Holocene) ice wedges from Cape Mamontov Klyk, Laptev Sea, northern Siberia. The Cryosphere, v.7(1), p.31-46. doi: 10.5194/tc-7-31-2013.
  2. Brouchkov, A., Fukuda, M., Fedorov, A., Konstantinov, P. and Iwahana, G. (2004). Thermokarst as a short-term permafrost disturbance, Central Yakutia. Permafrost and Periglacial Processes, v.15(1), p.81-87. doi: 10.1002/ppp.473.
  3. Campbell-Heaton, K., Lacelle, D. and Fisher, D. (2021). Ice wedges as winter temperature proxy: Principles, limitations and noise in the δ18O records (an example from high Arctic Canada). Quaternary Science Reviews, v.269, 107135. doi: 10.1016/j.quascirev.2021.107135.
  4. Chartier, M., Mercier, G. and Blais, J.F. (2001). Partitioning of trace metals before and after biological removal of metals from sediments. Water Research, v.35(6), p.1435-1444. doi: 10.1016/S0043-1354(00)00404-8.
  5. Cho, Y.M., Ghosh, U., Kennedy, A.J., Grossman, A., Ray, G., Tomaszewski, J.E., Smithenry, D.W., Bridges, T.S. and Luthy, R.G. (2009). Field application of activated carbon amendment for in-situ stabilization of polychlorinated biphenyls in marine sediment. Environmental science & technology, v.43(10), p.3815-3823. doi: 10.1021/es802931c.
  6. Fedorov, A.N., Gavriliev, P.P., Konstantinov, P.Y., Hiyama, T., Iijima, Y. and Iwahana, G. (2014). Estimating the water balance of a thermokarst lake in the middle of the Lena River basin, eastern Siberia. Ecohydrology, v.7(2), p.188-196. doi: 10.1002/eco.1378.
  7. Iizuka, Y., Miyamoto, C., Matoba, S., Iwahana, G., Horiuchi, K., Takahashi, Y., Kanna, N., Suzuki, K. and Ohno, H. (2019). Ion concentrations in ice wedges: An innovative approach to reconstruct past climate variability. Earth and Planetary Science Letters, v.515, p.58-66. doi: 10.1016/j.epsl.2019.03.013.
  8. Kanevskiy, M., Shur, Y., Jorgenson, T., Brown, D.R., Moskalenko, N., Brown, J., Walker, D.A., Raynolds, M.K. and Buchhorn, M. (2017). Degradation and stabilization of ice wedges: Implications for assessing risk of thermokarst in northern Alaska. Geomorphology, v.297, p.20-42. doi: 10.1016/j.geomorph.2017.09.001.
  9. Kim, K., Yang, J.W., Yoon, H., Byun, E., Fedorov, A., Ryu, Y. and Ahn, J. (2019). Greenhouse gas formation in ice wedges at Cyuie, central Yakutia. Permafrost and Periglacial Processes, v.30(1), p.48-57. doi: 10.1002/ppp.1994.
  10. Larese-Casanova, P., Kappler, A. and Haderlein, S.B. (2012). Heterogeneous oxidation of Fe (II) on iron oxides in aqueous systems: Identification and controls of Fe (III) product formation. Geochimica et Cosmochimica Acta, v.91, p.171-186. doi: 10.1016/j.gca.2012.05.031.
  11. Lachenbruch, A.H. (1962). Mechanics of thermal contraction cracks and ice-wedge polygons in permafrost (Vol. 70). Geological Society of America. doi: 10.1130/SPE70
  12. Masse, G., Belt, S.T., Crosta, X., Schmidt, S., Snape, I., Thomas, D.N. and Rowland, S.J. (2011). Highly branched isoprenoids as proxies for variable sea ice conditions in the Southern Ocean. Antarctic Science, v.23(5), p.487-498. doi: 10.1017/S0954102011000381.
  13. Meyer, H., Schirrmeister, L., Yoshikawa, K., Opel, T., Wetterich, S., Hubberten, H.W. and Brown, J. (2010a). Permafrost evidence for severe winter cooling during the Younger Dryas in northern Alaska. Geophysical Research Letters, v.37(3). doi: 10.1029/2009GL041013.
  14. Meyer, H., Schirrmeister, L., Andreev, A., Wagner, D., Hubberten, H.W., Yoshikawa, K., Bobrov, A., Wetterich, S., Opel, T., Kandiano, E. and Brown, J. (2010b). Lateglacial and Holocene isotopic and environmental history of northern coastal Alaska-Results from a buried ice-wedge system at Barrow. Quaternary Science Reviews, v.29(27-28), p.3720-3735. doi: 10.1016/j.quascirev.2010.08.005.
  15. Namgung, S., Chon, C.M. and Lee, G. (2018). Formation of diverse Mn oxides: a review of bio/geochemical processes of Mn oxidation. Geosciences Journal, v.22(2), p.373-381. doi: 10.1007/s12303-018-0002-7.
  16. Opel, T., Dereviagin, A.Y., Meyer, H., Schirrmeister, L. and Wetterich, S. (2011). Palaeoclimatic Information from Stable Water Isotopes of Holocene Ice Wedges on the Dmitrii Laptev Strait, Northeast Siberia, Russia. Permafrost and Periglacial Processes, v.22(1), p.84-100. doi: 10.1002/ppp.667.
  17. Opel, T., Meyer, H., Wetterich, S., Laepple, T., Dereviagin, A. and Murton, J. (2018). Ice wedges as archives of winter paleoclimate: A review. Permafrost and Periglacial Processes, v. 29(3), p. 199-209. doi: 10.1002/ppp.1980.
  18. Ravel, B. and Newville, M. (2005). ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. Journal of synchrotron radiation, v.12(4), p.537-541. doi: 10.1107/S0909049505012719.
  19. Rounds, S.A. and Wilde, F.D. (2012). Chapter A6. Section 6.6. Alkalinity and acid neutralizing capacity (No. 09-A6. 6). US Geological Survey. doi: 10.3133/twri09A6.6.
  20. Schirrmeister, L., Siegert, C., Kuznetsova, T., Kuzmina, S., Andreev, A., Kienast, F., Meyer, H. and Bobrov, A. (2002). Paleoenvironmental and paleoclimatic records from permafrost deposits in the Arctic region of Northern Siberia. Quaternary International, v.89(1), p.97-118. doi: 10.1016/S1040-6182(01)00083-0.
  21. Sowers, T.D., Wani, R.P., Coward, E.K., Fischel, M.H., Betts, A.R., Douglas, T.A., Duckworth, O.W. and Sparks, D.L. (2020). Spatially resolved organomineral interactions across a permafrost chronosequence. Environmental science & technology, v.54(5), p.2951-2960. doi: 10.1021/acs.est.9b06558.
  22. Streletskaya, I.D., Vasiliev, A.A., Oblogov, G.E. and Tokarev, I.V. (2015). Reconstruction of paleoclimate of Russian Arctic in the Late Pleistocene-Holocene on the basis of isotope study of ice wedges. Earth's Cryosphere, v.19(2), p.98-106.
  23. Vasil'chuk, Y.K. and Budantseva, N.A. (2021). Holocene ice wedges of the Kolyma Lowland and January paleotemperature reconstructions based on oxygen isotope records. Permafrost and Periglacial Processes, v.33(1), p.3-17. doi: 10.1002/ppp.2128.
  24. White, P.A., Kalff, J., Rasmussen, J.B. and Gasol, J.M. (1991). The effect of temperature and algal biomass on bacterial production and specific growth rate in freshwater and marine habitats. Microbial ecology, v.21(1), p.99-118. doi: 10.1007/BF02539147.
  25. Yang, J.W., Ahn, J., Iwahana, G., Han, S., Kim, K. and Fedorov, A. (2020). Brief Communication: The reliability of gas extraction techniques for analysing CH 4 and N 2 O compositions in gas trapped in permafrost ice wedges. The Cryosphere, v.14(4), p.1311-1324. doi: 10.5194/tc-14-1311-2020.
  26. Yang, J.W., Ahn, J., Iwahana, G., Ko, N., Kim, J.H., Kim, K., Fedorov, A. and Han, S. (2022). Origin of CO2, CH4, and N2O trapped in ice wedges in central Yakutia and their relationship. Permafrost and Periglacial Processes. doi: 10.1002/ppp.2176.