DOI QR코드

DOI QR Code

Phylogeny, Morphology and Pathogenicity of Biscogniauxia mediterranea Causing Charcoal Canker Disease on Quercus brantii in Southern Iran

  • Samaneh, Ahmadi (Department of Plant Protection, College of Agriculture, Yasouj University) ;
  • Fariba, Ghaderi (Department of Plant Protection, College of Agriculture, Yasouj University) ;
  • Habiballah, Charehgani (Department of Plant Protection, College of Agriculture, Yasouj University) ;
  • Soraya, Karami (Department of Agriculture, Payame Noor University (PNU)) ;
  • Dariush, Safaee (Plant Protection Research Department, Kermanshah Agricultural and Natural Resources Research and Education Center, AREEO)
  • Received : 2022.08.25
  • Accepted : 2022.11.30
  • Published : 2022.12.31

Abstract

Charcoal canker of oak, which has recently increased in southern Iran, could pose a serious threat to the entire forest ecosystem in the near future. In addition, it seems that climate change and its consequences, such as drought in the southern regions of Iran, have exacerbated this phenomenon. Consequently, the objective of this study was to identify the fungal pathogens that could cause charcoal canker disease in the oak forests of South Zagros. It was also sought to find associations between changes in the occurrence/exacerbation of charcoal canker disease under non and intense drought stress in non-inoculated or inoculated Quercus brantii seedlings. In total, 120 isolates were obtained from eight oak forests located in the Zagros Mountains of Southern Iran, Kohgiluyeh & Boyer-Ahmad and Fars provinces, which were classified as Biscogniauxia mediterranea based on morphological assessment. Subsequently, molecular assay confirmed the result by phylogenetic inference of internal transcribed spacer-rDNA regions, α-actin, and β-tubulin genes. The results of the pathogenicity test showed that the response of isolates of B. mediterranea (Iran-G1 and Iran-M70) was varied in different environments for the measured necrotic lesion length. In comparison with the control moisture treatments (non-stress), the necrotic lesion length in inoculated treatments increased under intense drought stress. In general, inoculated oak seedlings' exposure to water-deficient stress by the pathogen of B. mediterranea could affect the spread/severity of the charcoal canker disease.

Keywords

Acknowledgement

The authors thank the Yasouj University for financial support.

References

  1. Aranda, I., Castro, L., Pardos, M., Gil, L. and Pardos, J. A. 2005. Effects of the interaction between drought and shade on water relations, gas exchange and morphological traits in cork oak (Quercus suber L.) seedlings. For. Ecol. Manag. 210: 117-129.  https://doi.org/10.1016/j.foreco.2005.02.012
  2. Capretti, P. and Battisti, A. 2007. Water stress and insect defoliation promote the colonization of Quercus cerris by the fungus Biscogniauxia mediterranea. For. Pathol. 37: 129-135.  https://doi.org/10.1111/j.1439-0329.2007.00489.x
  3. Carbone, I. and Kohn, L. M. 1999. A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 91: 553-556.  https://doi.org/10.2307/3761358
  4. Carter, M. R. and Gregorich, E. G. 2007. Soil Sampling and Methods of Analysis. CRC Press, Boca Raton, FL, USA. 1264 
  5. Collado, J., Platas, G. and Pelaez, F. 2001. Identification of an endophytic Nodulisporium sp. from Quercus ilex in central Spain as the anamorph of Biscogniauxia mediterranea by rDNA sequence analysis and effect of different ecological factors on distribution of the fungus. Mycologia 93: 875-886.  https://doi.org/10.2307/3761753
  6. Corcobado, T., Cubera E., Juarez, E., Moreno, G. and Solla, A. 2014. Drought events determine performance of Quercus ilex seedlings and increase their susceptibility to Phytophthora cinnamomi. Agric. For. Meteorol. 192-193: 1-8.  https://doi.org/10.1016/j.agrformet.2014.02.007
  7. Cotrozzi, L., Remorini, D., Pellegrini, E., Landi, M., Massai, R., Nali, C. et al. 2016. Variations in physiological and biochemical traits of oak seedlings grown under drought and ozone stress. Physiol. Plant. 157: 69-84.  https://doi.org/10.1111/ppl.12402
  8. Emadodin, I., Reinsch, T. and Taube, F. 2019. Drought and desertification in Iran. Hydrology 6: 66. 
  9. Faraji, S., Hadadinejad, M., Abdossi, V., Basaki, T. and Karami, S. 2020. Screening pomegranate (Punica granatum L.) genotypes for drought tolerance using physiological and phytochemical characteristics. Fruits 75: 130-140.  https://doi.org/10.17660/th2020/75.3.5
  10. Franceschini, A. and Luciano, P. 2009. Main pests and diseases of cork oak forests in Sardinia. In: Cork Oak Woodlands and Cork Industry: Present, Past and Future, ed. by S. Zapata, pp. 172-195. Museu del Suro de Palafrugell Publisher, Girona, Spain.
  11. Ghaderi, F. and Habibi, A. 2021. Morphological and molecular characterization of Phytophthora species associated with root and crown rot of pomegranate in Iran. Plant Pathol. 70: 615-629.  https://doi.org/10.1111/ppa.13320
  12. Ghanbary, E., Tabari Kouchaksaraei, M., Mirabolfathy, M., Modarres Sanavi, S. A. M. and Rahaie, M. 2017. Growth and physiological responses of Quercus brantii seedlings inoculated with Biscogniauxia mediterranea and Obolarina persica under drought stress. For. Pathol. 47: e12353. 
  13. Giambra, S., Torta, L., Scopel, C., Causin, R. and Burruano, S. 2009. Primi studi su Biscogniauxia mediterranea in Sicilia Occidentale. In: Atti del Terzo Congresso Nazionale di Selvicoltura, pp. 1394-1396. Accademia Italiana di Scienze Forestali, Firenze, Italy. 
  14. Glass, N. L. and Donaldson, G. C. 1995. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl. Environ. Microbiol. 61: 1323-1330.  https://doi.org/10.1128/aem.61.4.1323-1330.1995
  15. Goharrizi, K. J., Baghizadeh, A., Kalantar, M. and Fatehi, F. 2020. Combined effects of salinity and drought on physiological and biochemical characteristics of pistachio rootstocks. Sci. Hortic. 261: 108970. 
  16. Henriques, J., Barrento, M. J., Bonifacio, L., Gomes, A. A., Lima, A. and Sousa E. 2014. Factors affecting the dispersion of Biscogniauxia mediterranea in Portuguese cork oak stands. Silva Lusit. 22: 83-97. 
  17. Henriques, J., Inacio, M. L., Lima, A. and Sousa, E. 2012. New outbreaks of charcoal canker on young cork oak trees in Portugal. IOBC/WPRS Bull. 76: 85-88. 
  18. Hsieh, H.-M., Ju, Y.-M., Hsueh, P.-R., Lin, H.-Y., Hu, F.-R. and Chen, W.-L. 2009. Fungal keratitis caused by a new filamentous hyphomycete Sagenomella keratitidis. Bot. Stud. 50: 331-335. 
  19. Hsieh, H.-M., Ju, Y.-M. and Rogers, J. D. 2005. Molecular phylogeny of Hypoxylon and closely related genera. Mycologia 97: 844-865.  https://doi.org/10.3852/mycologia.97.4.844
  20. Ju, Y.-M. and Rogers, J. D. 2001. New and interesting Biscogniauxia taxa, with a key to the world species. Mycol. Res. 105: 1123-1133.  https://doi.org/10.1016/S0953-7562(08)61976-0
  21. Ju, Y. M., Rogers, J. D., San Martin, F. and Granmo, A. 1998. The genus Biscogniauxia. Mycotaxon 66: 1-98. 
  22. Jurc, D. and Ogris, N. 2006. First reported outbreak of charcoal disease caused by Biscogniauxia mediterranea on Turkey oak in Slovenia. Plant Pathol. 55: 299. 
  23. La Porta, N., Capretti, P., Thomsen, I. M., Kasanen, R., Hietala, A. M. and Von Weissenberg, K. 2008. Forest pathogens with higher damage potential due to climate change in Europe. Can. J. Plant Pathol. 30: 177-195.  https://doi.org/10.1080/07060661.2008.10540534
  24. Linaldeddu, B. T., Scanu, B., Maddau, L. and Franceschini, A. 2014. Diplodia corticola and Phytophthora cinnamomi: the main pathogens involved in holm oak decline on Caprera Island (Italy). For. Pathol. 44: 191-200.  https://doi.org/10.1111/efp.12081
  25. Linaldeddu, B. T., Sirca, C., Spano, D. and Franceschini, A. 2011. Variation of endophytic cork oak-associated fungal communities in relation to plant health and water stress. For. Pathol. 41: 193-201.  https://doi.org/10.1111/j.1439-0329.2010.00652.x
  26. Mansouri Daneshvar, M. R., Ebrahimi, M. and Nejadsoleymani, H. 2019. An overview of climate change in Iran: facts and statistics. Environ. Syst. Res. 8: 7. 
  27. Massey, F. J. Jr. 1951. The Kolmogorov-Smirnov test for goodness of fit. J. Am. Stat. Assoc. 46: 68-78.  https://doi.org/10.1080/01621459.1951.10500769
  28. Mirabolfathy, M., Groenewald, J. Z. and Crous, P. W. 2011. The occurrence of charcoal canker disease caused by Biscogniauxia mediterranea on chestnut-leaved oak (Quercus castaneifolia) in the Golestan forests of Iran. Plant Dis. 95: 876. 
  29. Mirabolfathy, M., Ju, Y.-M., Hsieh, H.-M., and Rogers, J. D. 2013. Obolarina persica sp. nov., associated with dying Quercus in Iran. Mycoscience 54: 315-320.  https://doi.org/10.1016/j.myc.2012.11.003
  30. Mollaei, Y. T. 2019. The root results of oak sudden death in Plain Barm, Zagros Forest, Fars, Iran. JOJ Wildl. Biodivers. 1: 555558. 
  31. Murray, M. G. and Thompson, W. F. 1980. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 8: 4321-4325.  https://doi.org/10.1093/nar/8.19.4321
  32. Nugent, L. K., Sihanonth, P., Thienhirun, S. and Whalley, A. J. S. 2005. Biscogniauxia: a genus of latent invaders. Mycologist 19: 40-43.  https://doi.org/10.1017/S0269915X05001060
  33. O'Donnell, K. and Cigelnik, E. 1997. Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Mol. Phylogenet. Evol. 7: 103-116.  https://doi.org/10.1006/mpev.1996.0376
  34. Ragazzi, A., Mancini, F., Dellavalle, I., Captreti, P. and Moricca, S. 2001. Endophytic fungi in Quercus cerris: isolation frequency in relation to phenological phase, tree health and the organ affected. Phytopathol. Mediterr. 40: 165-171. 
  35. Ranjbarfordoei, A., Vandamme, P. and Samson, R. 2013. Some eco-physiological characteristics of arta (Calligonum comosum L'Herit) in response to drought stress. For. Sci. Pract. 15: 114-120.  https://doi.org/10.1007/s11632-013-0208-8
  36. Rogers, J. D., Ju, Y.-M. and Candoussau, F. 1996. Biscogniauxia anceps comb. nov. and Vivantia guadalupensis gen. et sp. nov. Mycol. Res. 100: 669-674.  https://doi.org/10.1016/S0953-7562(96)80196-1
  37. Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Hohna, S. et al. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61: 539-542.  https://doi.org/10.1093/sysbio/sys029
  38. Sabeti, H. 1994. Forest, Trees, and Shrubs of Iran. 2nd ed. Yazd University, Yazd, Iran. 810 
  39. Saeidnia, F., Majidi, M. M., Mirlohi, A. and Ahmadi, B. 2018. Physiological responses of drought tolerance in orchardgrass (Dactylis glomerata) in association with persistence and summer dormancy. Crop Pasture Sci. 69: 515-526.  https://doi.org/10.1071/cp17314
  40. Safaee, D., Khodaparast, S. A., Mirabolfathy, M. and Mousanejad, S. 2015. Pathogenicity assessment of Obolarina persica on Persian oak tree and seedling. In: Proceeding of 2nd Iranian Mycological Congress, p. 120. University of Tehran, Tehran, Iran. 
  41. Safaee, D., Khodaparast, S. A., Mirabolfathy, M. and Mousanejad, S. 2016. A multiplex PCR-based technique for identification of Biscogniauxia mediterranea and Obolarina persica causing charcoal disease of oak trees in Zagros forests. For. Pathol. 47: e12330. 
  42. Safaee, D., Khodaparast, S. A., Mirabolfathy, M. and Sheikholeslami, M. 2017. Some aspects of biology and host range of Biscogniauxia mediterranea, one of the causal agent of oak charcoal disease. Mycol. Iran. 4: 121-129. 
  43. Swofford, D. L. 2002. PAUP*: phylogenetic analysis using parsimony (*and(*and other methods). Sinauer Associates, Sunderland, MA, USA. 
  44. Vannini, A., Lucero, G., Anselmi, N. and Vettraino, A. M. 2009. Response of endophytic Biscogniauxia mediterranea to variation in leaf water potential of Quercus cerris. For. Pathol. 39: 8-14.  https://doi.org/10.1111/j.1439-0329.2008.00554.x
  45. Vasilyeva, L. N., Stephenson, S. L. and Miller, A. N. 2007. Pyrenomycetes of the Great Smoky Mountains National Park. IV. Biscogniauxia, Camaropella, Camarops, Camillea, Peridoxylon and Whalleya. Fungal Divers. 25: 219-231. 
  46. White, T. J., Bruns, T., Lee, S. and Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR Protocols: A Guide to Methods and Applications, eds. by M. A. Innis, D. H. Gelfand, J. J. Sninsky and T. J. White, pp. 315-322. Academic Press, New York, NY, USA.