DOI QR코드

DOI QR Code

이산화탄소 반응경화 시멘트 제조 및 경화특성 연구

Manufacturing Properties and Hardening Characteristic of CO2 Reactive Hardening Cement

  • 문기연 (한국석회석신소재연구소) ;
  • 김병렬 (한국석회석신소재연구소) ;
  • 이승한 (한국석회석신소재연구소) ;
  • 최문관 (한국석회석신소재연구소) ;
  • 조계홍 (한국석회석신소재연구소) ;
  • 조진상 (한국석회석신소재연구소)
  • Ki-Yeon, Moon (Korea Institute of Limestone and Advanced Materials) ;
  • Byung-Ryeol, Kim (Korea Institute of Limestone and Advanced Materials) ;
  • Seung-Han, Lee (Korea Institute of Limestone and Advanced Materials) ;
  • Moon-Kwan, Choi (Korea Institute of Limestone and Advanced Materials) ;
  • Kye-Hong, Cho (Korea Institute of Limestone and Advanced Materials) ;
  • Jin-Sang, Cho (Korea Institute of Limestone and Advanced Materials)
  • 투고 : 2022.11.17
  • 심사 : 2022.11.29
  • 발행 : 2022.12.31

초록

이산화탄소 반응경화 시멘트(Calcium silicate based cement, CSC)는 제조 전 공정에서 보통 포틀랜드 시멘트 대비 최대 70% 가량의 CO2 감축을 기대할 수 있는 저탄소 시멘트로 해외 선진국가에서는 이미 상용화 단계에 도달하였으나 국내에서는 제조특성 및 기초물성연구가 시작되고 있는 단계이다. 이에 본 연구에서는 국내산 원료물질을 활용한 CSC 제조 가능성을 검토하고, 제조한 CSC의 기초물성평가를 통해 CSC의 국산화 가능성을 조사하고자 하였다. 실험결과, 국내산 고품위 석회석과 실리카흄을 활용해 제조한 CSC의 주요광물상은 CS, C3S2, C2S 및 미반응 SiO2로 이론적인 CSC 주요광물상과 유사한 특성을 나타내며, 국내산 원료물질을 활용한 CSC 제조가능성을 확인할 수 있었다. 제조한 CSC의 경화특성 조사를 위해 양생분위기에 따른 광물상 변화특성을 조사하였으며, TG/DSC 열분석결과, 탄산화양생을 실시한 샘플에서만 탄산화반응 결과생성물로서 다량의 CaCO3가 생성된 것을 확인할 수 있었다. 이러한 특성은 압축강도에서 뚜렷한 차이를 나타내었는데, 습윤양생 시 재령 7일 기준 압축강도 1MPa 이하로 수화반응 및 탄산화반응에 의한 물성발현이 거의 없는 반면에 탄산화 양생 시 재령 7일 기준 압축강도 56MPa 이상으로 조기강도 특성이 우수한 것을 확인할 수 있었다.

Calcium silicate based cement (CSC) is a low-carbon cement that emits less CO2 by up to 70% compared to ordinary Portland cement during its manufacture. Most developed countries have commercialized CSC, whereas Korea is still investigating the manufacturing characteristics and basic properties of CSC. This paper provides a review of methods for manufacturing CSC using domestic raw materials and discusses the possibility of CSC localization based on an evaluation of the basic physical properties of manufactured CSC. The experimental results of this study indicate that the primary mineral components of CSC were CS, C3S2 C2S, and unreacted SiO2. This suggests the possibility of manufacturing CSC using domestic raw materials that exhibit mineral compositions similar to that of theoretical CSC. The compressive strength of CSC mortar is less than 1MPa at the age of 7 d under wet curing. This implies that hydration does not affect the property development of CSC mortar. Meanwhile, during carbonation curing, the compressive strength is 56 MPa or higher after 7 d, which indicates excellent early strength development. Furthermore, results of Thermogravimetric Analysis Differential scanning calorimetry (TG/DSC) show that a significant amount of CaCO3 is formed, which is consistent with the results of previous studies. This implies that carbonation is associated significantly with the properties of CSC.

키워드

과제정보

이 연구는 2022년도 산업통상자원부 및 산업기술평가관리원(KEIT) 연구비 지원에 의한 연구임(RS-2022-00155662)

참고문헌

  1. https://www.edaily.co.kr/news/read?newsId=01190646629177168&mediaCodeNo=257.
  2. Kim, Y.M., Kim, J.S., Han, T.S., 2021 : Development of Eco-Concrete Produced with Calcined Marl Clay as Cement Replacement Material, Journal of the Korean Society of Hazard Mitigation, 21(4), pp.128-137.
  3. Koh, K.T., Lee, S.H., Ryu, G.S., et al., 2017 : Development of Technologies for Smart Construction Materials to Reduce CO2 and Its Application, Korea Institute Of Construction Technology, KICT 2017-212.
  4. Seok, W.S., Cho, J.S., Moon, K.Y., et al., 2021 : A study of curing characteristics of CO2-absorption calcium silicate cement with respect to CO2 concentration, Journal of Ceramic Processing Research, 22(1), pp.25-30. https://doi.org/10.36410/JCPR.2021.22.1.25
  5. Svensson, K., Neumann, A., Menezes, F.F., et al., 2018 : The Conversion of Wollastonite to CaCO3 Considering Its Use for CCS Application as Cementitious Material, Applied Sciences, 8(2), pp.2-18.
  6. Qian, B., Li, X., Shen, X., 2016 : Preparation and Accelerated Carbonation of Low Temperature Intered Clinker with Low Ca/Si Ratio, Journal of Cleaner Production, 120, pp.249-259. https://doi.org/10.1016/j.jclepro.2016.01.024
  7. Ashraf, W., Olek, J., Atakan, V., 2016 : Carbonation Reaction Kinetics, CO2 Sequestration Capacity, and Microstructure of Hydraulic and Non-Hydraulic Cementitious Binders, Fourth International Conference on Sustainable Construction Materials and Technologies, Las Vegas, USA, August 7-11.
  8. Alturiki, A., 2022 : The Global Carbon Footprint and How New Carbon Mineralization Technologies Can Be Used to Reduce CO2 Emissions, ChemEngineering, 6(44), pp.1-32. https://doi.org/10.3390/chemengineering6010001
  9. Jain, J., Atakan, V., DeCristofaro, N., et al., 2015 : Performance of Calcium Silicate-Based Carbonated Concretes vs. Hydrated Concretes under Freeze-Thaw Environments, The Masterbuilder, pp.66-89.
  10. Meyer, V., Cristofaro, N.D., Bryant, J., et al., 2018 : Solidia Cement an Example of Carbon Capture and Utilization, Engeneering Materials, 761, pp.197-203.
  11. Lee, H.S., Song, H., 2022 : Component and Phase Analysis of Calcium Silicate Cement Clinker by Raw Materials Mix Design, Journal of the Korea Institute of Building Construction, 22(3), pp.251-258. https://doi.org/10.5345/JKIBC.2022.22.3.251
  12. Sahu, S., 2019 : characterization of carbonated calcium silicate cement-based concrete, 17th Euroseminar on Microscopy Applied to Building Materials, pp.214-219.
  13. Smigelskyte, A., Siauciunas, R., Hilbig, H., et al., 2020 : Carbonated rankinite binder: effect of curing parameters on microstructure, strength development and durability performance, Scientific Reports, 10(1), 14462.
  14. Choi, S.W., Jang, B.S., Lee, K.M., 2013 : Fundamental Properties of Fly ash Concrete Containing Lightly Burnt MgO Powder, Concrete Engineering, 33(2), pp.475-481.