DOI QR코드

DOI QR Code

Effects of Engineered Saccharomyces cerevisiae Fermenting Cellobiose through Low-Energy-Consuming Phosphorolytic Pathway in Simultaneous Saccharification and Fermentation

  • Choi, Hyo-Jin (Department of Bioenergy Science and Technology, and Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University) ;
  • Jin, Yong-Su (Department of Food Science and Human Nutrition, and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign) ;
  • Lee, Won-Heong (Department of Bioenergy Science and Technology, and Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University)
  • Received : 2021.11.29
  • Accepted : 2021.12.07
  • Published : 2022.01.28

Abstract

Until recently, four types of cellobiose-fermenting Saccharomyces cerevisiae strains have been developed by introduction of a cellobiose metabolic pathway based on either intracellular β-glucosidase (GH1-1) or cellobiose phosphorylase (CBP), along with either an energy-consuming active cellodextrin transporter (CDT-1) or a non-energy-consuming passive cellodextrin facilitator (CDT-2). In this study, the ethanol production performance of two cellobiose-fermenting S. cerevisiae strains expressing mutant CDT-2 (N306I) with GH1-1 or CBP were compared with two cellobiose-fermenting S. cerevisiae strains expressing mutant CDT-1 (F213L) with GH1-1 or CBP in the simultaneous saccharification and fermentation (SSF) of cellulose under various conditions. It was found that, regardless of the SSF conditions, the phosphorolytic cellobiose-fermenting S. cerevisiae expressing mutant CDT-2 with CBP showed the best ethanol production among the four strains. In addition, during SSF contaminated by lactic acid bacteria, the phosphorolytic cellobiose-fermenting S. cerevisiae expressing mutant CDT-2 with CBP showed the highest ethanol production and the lowest lactate formation compared with those of other strains, such as the hydrolytic cellobiose-fermenting S. cerevisiae expressing mutant CDT-1 with GH1-1, and the glucose-fermenting S. cerevisiae with extracellular β-glucosidase. These results suggest that the cellobiose-fermenting yeast strain exhibiting low energy consumption can enhance the efficiency of the SSF of cellulosic biomass.

Keywords

Acknowledgement

This study was financially supported by Chonnam National University (Grant number: 2020-3893). This research was also supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2019R1F1A1059516) as well as Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry (IPET) and Korea Smart Farm R&D Foundation (KosFarm) through Smart Farm Innovation Technology Development Program, funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA) and MSIT, Rural Development Administration (RDA) (No. 421045-03).

References

  1. Gancedo JM. 1998. Yeast carbon catabolite repression. Microbiol. Mol. Biol. Rev. 62: 334-361. https://doi.org/10.1128/mmbr.62.2.334-361.1998
  2. Jin YS, Cate JH. 2017. Metabolic engineering of yeast for lignocellulosic biofuel production. Curr. Opin. Chem. Biol. 41: 99-106. https://doi.org/10.1016/j.cbpa.2017.10.025
  3. Kim SR, Ha SJ, Wei N, Oh EJ, Jin YS. 2012. Simultaneous co-fermentation of mixed sugars: a promising strategy for producing cellulosic ethanol. Trends Biotechnol. 30: 274-282. https://doi.org/10.1016/j.tibtech.2012.01.005
  4. Liu CG, Xiao Y, Xia XX, Zhao XQ, Peng L, Srinophakun P, et al. 2019. Cellulosic ethanol production: progress, challenges and strategies for solutions. Biotechnol. Adv. 37: 491-504. https://doi.org/10.1016/j.biotechadv.2019.03.002
  5. Subtil T, Boles E. 2012. Competition between pentoses and glucose during uptake and catabolism in recombinant Saccharomyces cerevisiae. Biotechnol. Biofuels. 5: 14. https://doi.org/10.1186/1754-6834-5-14
  6. Ha SJ, Galazka JM, Kim SR, Choi JH, Yang X, Seo JH, et al. 2011. Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation. Proc. Natl. Acad. Sci. USA 108: 504-509. https://doi.org/10.1073/pnas.1010456108
  7. Ha SJ, Wei Q, Kim SR, Galazka JM, Cate J, Jin YS. 2011. Cofermentation of cellobiose and galactose by an engineered Saccharomyces cerevisiae strain. Appl. Environ. Microbiol. 77: 5822-5825. https://doi.org/10.1128/AEM.05228-11
  8. Lee WH, Jin YS. 2017. Improved ethanol production by engineered Saccharomyces cerevisiae expressing a mutated cellobiose transporter during simultaneous saccharification and fermentation. J. Biotechnol. 245: 1-8. https://doi.org/10.1016/j.jbiotec.2017.01.018
  9. Lee WH, Jin YS. 2017. Evaluation of ethanol production activity by engineered Saccharomyces cerevisiae fermenting cellobiose through the phosphorolytic pathway in simultaneous saccharification and fermentation of cellulose. J. Microbiol. Biotechnol. 27: 1649-1656. https://doi.org/10.4014/jmb.1705.05039
  10. Lee WH, Nan H, Kim HJ, Jin YS. 2013. Simultaneous saccharification and fermentation by engineered Saccharomyces cerevisiae without supplementing extracellular β-glucosidase. J. Biotechnol. 167: 316-322. https://doi.org/10.1016/j.jbiotec.2013.06.016
  11. Galazka JM, Tian C, Beeson WT, Martinez B, Glass NL, Cate JH. 2010. Cellodextrin transport in yeast for improved biofuel production. Science 330: 84-86. https://doi.org/10.1126/science.1192838
  12. Ha SJ, Galazka JM, Oh EJ, Kordic V, Kim H, Jin YS, et al. 2013. Energetic benefits and rapid cellobiose fermentation by Saccharomyces cerevisiae expressing cellobiose phosphorylase and mutant cellodextrin transporters. Metab. Eng. 15: 134-143. https://doi.org/10.1016/j.ymben.2012.11.005
  13. Parisutham V, Chandran SP, Mukhopadhyay A, Lee SK, Keasling JD. 2017. Intracellular cellobiose metabolism and its applications in lignocellulose-based biorefineries. Bioresour. Technol. 239: 496-506. https://doi.org/10.1016/j.biortech.2017.05.001
  14. Kim H, Lee WH, Galazka JM, Cate JH, Jin YS. 2014. Analysis of cellodextrin transporters from Neurospora crassa in Saccharomyces cerevisiae for cellobiose fermentation. Appl. Microbiol. Biotechnol. 98: 1087-1094. https://doi.org/10.1007/s00253-013-5339-2
  15. Kim H, Oh EJ, Lane ST, Lee WH, Cate JH, Jin YS. 2018. Enhanced cellobiose fermentation by engineered Saccharomyces cerevisiae expressing a mutant cellodextrin facilitator and cellobiose phosphorylase. J. Biotechnol. 275: 53-59. https://doi.org/10.1016/j.jbiotec.2018.04.008
  16. Alexander JK. 1961. Characteristics of cellobiose phosphorylase. J. Bacteriol. 81: 903-910. https://doi.org/10.1128/jb.81.6.903-910.1961
  17. Tewari YB, Goldberg RN. 1989. Thermodynamics of hydrolysis of disaccharides: cellobiose, gentiobiose, isomaltose, and maltose. J. Biol. Chem. 264: 3966-3971. https://doi.org/10.1016/S0021-9258(19)84947-5
  18. Oh EJ, Kwak S, Kim H, Jin YS. 2017. Transporter engineering for cellobiose fermentation under lower pH conditions by engineered Saccharomyces cerevisiae. Bioresour. Technol. 245: 1469-1475. https://doi.org/10.1016/j.biortech.2017.05.138
  19. Hosaka K, Nikawa JI, Kodaki T, Yamashita S. 1992. A dominant mutation that alters the regulation of INO1 expression in Saccharomyces cerevisiae. J. Biochem. 111: 352-358. https://doi.org/10.1093/oxfordjournals.jbchem.a123761
  20. Bischoff KM, Liu S, Leathers TD, Worthington RE, Rich JO. 2009. Modeling bacterial contamination of fuel ethanol fermentation. Biotechnol. Bioeng. 103: 117-122. https://doi.org/10.1002/bit.22244
  21. Beckner M, Ivey ML, Phister TG. 2011. Microbial contamination of fuel ethanol fermentations. Lett. Appl. Microbiol. 53: 387-394. https://doi.org/10.1111/j.1472-765X.2011.03124.x
  22. Brexo RP, Sant'Ana AS. 2017. Impact and significance of microbial contamination during fermentation for bioethanol production. Renew. Sust. Energ. Rev. 73: 423-434. https://doi.org/10.1016/j.rser.2017.01.151
  23. Lucena BT, dos Santos BM, Moreira JL, Moreira APB, Nunes AC, Azevedo V, et al. 2010. Diversity of lactic acid bacteria of the bioethanol process. BMC Microbiol. 10: 298. https://doi.org/10.1186/1471-2180-10-298
  24. Liu M, Bischoff KM, Gill JJ, Mire-Criscione MD, Berry JD, Young R, et al. 2015. Bacteriophage application restores ethanol fermentation characteristics disrupted by Lactobacillus fermentum. Biotechnol. Biofuels 8: 132. https://doi.org/10.1186/s13068-015-0325-9
  25. Verce M, De Vuyst L, Weckx S. 2020. Comparative genomics of Lactobacillus fermentum suggests a free-living lifestyle of this lactic acid bacterial species. Food. Microbiol. 89: 103448. https://doi.org/10.1016/j.fm.2020.103448
  26. Piper PW. 2011. Resistance of yeasts to weak organic acid food preservatives. Adv. Appl. Microbiol. 77: 97-113. https://doi.org/10.1016/B978-0-12-387044-5.00004-2
  27. Lahtinen S, Ouwehand AC, Salminen S, von Wright A. 2011. Lactic acid bacteria: microbiological and functional aspects. Crc Press.
  28. Ucar RA, Perez-Diaz IM, Dean LL. 2020. Gentiobiose and cellobiose content in fresh and fermenting cucumbers and utilization of such disaccharides by lactic acid bacteria in fermented cucumber juice medium. Food Sci. Nutr. 8: 5798-5810. https://doi.org/10.1002/fsn3.1830
  29. Khatibi PA, Roach DR, Donovan DM, Hughes SR, Bischoff KM. 2014. Saccharomyces cerevisiae expressing bacteriophage endolysins reduce Lactobacillus contamination during fermentation. Biotechnol. Biofuels 7: 104. https://doi.org/10.1186/1754-6834-7-104
  30. Kim JS, Daum MA, Jin YS, Miller MJ. 2018. Yeast derived LysA2 can control bacterial contamination in ethanol fermentation. Viruses 10: 281. https://doi.org/10.3390/v10060281
  31. Roach DR, Khatibi PA, Bischoff KM, Hughes SR, Donovan DM. 2013. Bacteriophage-encoded lytic enzymes control growth of contaminating Lactobacillus found in fuel ethanol fermentations. Biotechnol. Biofuels 6: 20. https://doi.org/10.1186/1754-6834-6-20