Acknowledgement
This study was financially supported by Chonnam National University (Grant number: 2020-3893). This research was also supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2019R1F1A1059516) as well as Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry (IPET) and Korea Smart Farm R&D Foundation (KosFarm) through Smart Farm Innovation Technology Development Program, funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA) and MSIT, Rural Development Administration (RDA) (No. 421045-03).
References
- Gancedo JM. 1998. Yeast carbon catabolite repression. Microbiol. Mol. Biol. Rev. 62: 334-361. https://doi.org/10.1128/mmbr.62.2.334-361.1998
- Jin YS, Cate JH. 2017. Metabolic engineering of yeast for lignocellulosic biofuel production. Curr. Opin. Chem. Biol. 41: 99-106. https://doi.org/10.1016/j.cbpa.2017.10.025
- Kim SR, Ha SJ, Wei N, Oh EJ, Jin YS. 2012. Simultaneous co-fermentation of mixed sugars: a promising strategy for producing cellulosic ethanol. Trends Biotechnol. 30: 274-282. https://doi.org/10.1016/j.tibtech.2012.01.005
- Liu CG, Xiao Y, Xia XX, Zhao XQ, Peng L, Srinophakun P, et al. 2019. Cellulosic ethanol production: progress, challenges and strategies for solutions. Biotechnol. Adv. 37: 491-504. https://doi.org/10.1016/j.biotechadv.2019.03.002
- Subtil T, Boles E. 2012. Competition between pentoses and glucose during uptake and catabolism in recombinant Saccharomyces cerevisiae. Biotechnol. Biofuels. 5: 14. https://doi.org/10.1186/1754-6834-5-14
- Ha SJ, Galazka JM, Kim SR, Choi JH, Yang X, Seo JH, et al. 2011. Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation. Proc. Natl. Acad. Sci. USA 108: 504-509. https://doi.org/10.1073/pnas.1010456108
- Ha SJ, Wei Q, Kim SR, Galazka JM, Cate J, Jin YS. 2011. Cofermentation of cellobiose and galactose by an engineered Saccharomyces cerevisiae strain. Appl. Environ. Microbiol. 77: 5822-5825. https://doi.org/10.1128/AEM.05228-11
- Lee WH, Jin YS. 2017. Improved ethanol production by engineered Saccharomyces cerevisiae expressing a mutated cellobiose transporter during simultaneous saccharification and fermentation. J. Biotechnol. 245: 1-8. https://doi.org/10.1016/j.jbiotec.2017.01.018
- Lee WH, Jin YS. 2017. Evaluation of ethanol production activity by engineered Saccharomyces cerevisiae fermenting cellobiose through the phosphorolytic pathway in simultaneous saccharification and fermentation of cellulose. J. Microbiol. Biotechnol. 27: 1649-1656. https://doi.org/10.4014/jmb.1705.05039
- Lee WH, Nan H, Kim HJ, Jin YS. 2013. Simultaneous saccharification and fermentation by engineered Saccharomyces cerevisiae without supplementing extracellular β-glucosidase. J. Biotechnol. 167: 316-322. https://doi.org/10.1016/j.jbiotec.2013.06.016
- Galazka JM, Tian C, Beeson WT, Martinez B, Glass NL, Cate JH. 2010. Cellodextrin transport in yeast for improved biofuel production. Science 330: 84-86. https://doi.org/10.1126/science.1192838
- Ha SJ, Galazka JM, Oh EJ, Kordic V, Kim H, Jin YS, et al. 2013. Energetic benefits and rapid cellobiose fermentation by Saccharomyces cerevisiae expressing cellobiose phosphorylase and mutant cellodextrin transporters. Metab. Eng. 15: 134-143. https://doi.org/10.1016/j.ymben.2012.11.005
- Parisutham V, Chandran SP, Mukhopadhyay A, Lee SK, Keasling JD. 2017. Intracellular cellobiose metabolism and its applications in lignocellulose-based biorefineries. Bioresour. Technol. 239: 496-506. https://doi.org/10.1016/j.biortech.2017.05.001
- Kim H, Lee WH, Galazka JM, Cate JH, Jin YS. 2014. Analysis of cellodextrin transporters from Neurospora crassa in Saccharomyces cerevisiae for cellobiose fermentation. Appl. Microbiol. Biotechnol. 98: 1087-1094. https://doi.org/10.1007/s00253-013-5339-2
- Kim H, Oh EJ, Lane ST, Lee WH, Cate JH, Jin YS. 2018. Enhanced cellobiose fermentation by engineered Saccharomyces cerevisiae expressing a mutant cellodextrin facilitator and cellobiose phosphorylase. J. Biotechnol. 275: 53-59. https://doi.org/10.1016/j.jbiotec.2018.04.008
- Alexander JK. 1961. Characteristics of cellobiose phosphorylase. J. Bacteriol. 81: 903-910. https://doi.org/10.1128/jb.81.6.903-910.1961
- Tewari YB, Goldberg RN. 1989. Thermodynamics of hydrolysis of disaccharides: cellobiose, gentiobiose, isomaltose, and maltose. J. Biol. Chem. 264: 3966-3971. https://doi.org/10.1016/S0021-9258(19)84947-5
- Oh EJ, Kwak S, Kim H, Jin YS. 2017. Transporter engineering for cellobiose fermentation under lower pH conditions by engineered Saccharomyces cerevisiae. Bioresour. Technol. 245: 1469-1475. https://doi.org/10.1016/j.biortech.2017.05.138
- Hosaka K, Nikawa JI, Kodaki T, Yamashita S. 1992. A dominant mutation that alters the regulation of INO1 expression in Saccharomyces cerevisiae. J. Biochem. 111: 352-358. https://doi.org/10.1093/oxfordjournals.jbchem.a123761
- Bischoff KM, Liu S, Leathers TD, Worthington RE, Rich JO. 2009. Modeling bacterial contamination of fuel ethanol fermentation. Biotechnol. Bioeng. 103: 117-122. https://doi.org/10.1002/bit.22244
- Beckner M, Ivey ML, Phister TG. 2011. Microbial contamination of fuel ethanol fermentations. Lett. Appl. Microbiol. 53: 387-394. https://doi.org/10.1111/j.1472-765X.2011.03124.x
- Brexo RP, Sant'Ana AS. 2017. Impact and significance of microbial contamination during fermentation for bioethanol production. Renew. Sust. Energ. Rev. 73: 423-434. https://doi.org/10.1016/j.rser.2017.01.151
- Lucena BT, dos Santos BM, Moreira JL, Moreira APB, Nunes AC, Azevedo V, et al. 2010. Diversity of lactic acid bacteria of the bioethanol process. BMC Microbiol. 10: 298. https://doi.org/10.1186/1471-2180-10-298
- Liu M, Bischoff KM, Gill JJ, Mire-Criscione MD, Berry JD, Young R, et al. 2015. Bacteriophage application restores ethanol fermentation characteristics disrupted by Lactobacillus fermentum. Biotechnol. Biofuels 8: 132. https://doi.org/10.1186/s13068-015-0325-9
- Verce M, De Vuyst L, Weckx S. 2020. Comparative genomics of Lactobacillus fermentum suggests a free-living lifestyle of this lactic acid bacterial species. Food. Microbiol. 89: 103448. https://doi.org/10.1016/j.fm.2020.103448
- Piper PW. 2011. Resistance of yeasts to weak organic acid food preservatives. Adv. Appl. Microbiol. 77: 97-113. https://doi.org/10.1016/B978-0-12-387044-5.00004-2
- Lahtinen S, Ouwehand AC, Salminen S, von Wright A. 2011. Lactic acid bacteria: microbiological and functional aspects. Crc Press.
- Ucar RA, Perez-Diaz IM, Dean LL. 2020. Gentiobiose and cellobiose content in fresh and fermenting cucumbers and utilization of such disaccharides by lactic acid bacteria in fermented cucumber juice medium. Food Sci. Nutr. 8: 5798-5810. https://doi.org/10.1002/fsn3.1830
- Khatibi PA, Roach DR, Donovan DM, Hughes SR, Bischoff KM. 2014. Saccharomyces cerevisiae expressing bacteriophage endolysins reduce Lactobacillus contamination during fermentation. Biotechnol. Biofuels 7: 104. https://doi.org/10.1186/1754-6834-7-104
- Kim JS, Daum MA, Jin YS, Miller MJ. 2018. Yeast derived LysA2 can control bacterial contamination in ethanol fermentation. Viruses 10: 281. https://doi.org/10.3390/v10060281
- Roach DR, Khatibi PA, Bischoff KM, Hughes SR, Donovan DM. 2013. Bacteriophage-encoded lytic enzymes control growth of contaminating Lactobacillus found in fuel ethanol fermentations. Biotechnol. Biofuels 6: 20. https://doi.org/10.1186/1754-6834-6-20