Acknowledgement
This research was supported by the Korea Research Institute of Bioscience and Biotechnology (KRIBB) Research Initiative Program (KGM5362111) and the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2021R1I1A1A01048981).
References
- Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al. 1998. Embryonic stem cell lines derived from human blastocysts. Science 282: 1145-1147. https://doi.org/10.1126/science.282.5391.1145
- Kim J, Moon SH, Lee SH, Lee DR, Koh GY, Chung HM. 2007. Effective isolation and culture of endothelial cells in embryoid body differentiated from human embryonic stem cells. Stem Cells Dev. 16: 269-280. https://doi.org/10.1089/scd.2006.0108
- Chae JI, Kim J, Son MY, Jeon YJ, Kim DW, Kim HE, et al. 2013. Cardioprotective molecules are enriched in beating cardiomyocytes derived from human embryonic stem cells. Int. J. Cardiol. 165: 341-354. https://doi.org/10.1016/j.ijcard.2012.07.013
- Volarevic V, Markovic BS, Gazdic M, Volarevic A, Jovicic N, Arsenijevic N, et al. 2018. Ethical and safety issues of stem cell-based therapy. Int. J. Med. Sci. 15: 36-45. https://doi.org/10.7150/ijms.21666
- Kim J, Shin JM, Jeon YJ, Chung HM, Chae JI. 2012. Proteomic validation of multifunctional molecules in mesenchymal stem cells derived from human bone marrow, umbilical cord blood and peripheral blood. PLoS One 7: e32350. https://doi.org/10.1371/journal.pone.0032350
- Luft FC. 2008. CCN2, the connective tissue growth factor. J. Mol. Med. (Berl) 86: 1-3. https://doi.org/10.1007/s00109-007-0287-x
- Chu CY, Chang CC, Prakash E, Kuo ML. 2008. Connective tissue growth factor (CTGF) and cancer progression. J. Biomed. Sci. 15: 675-685. https://doi.org/10.1007/s11373-008-9264-9
- Chang CC, Hsu WH, Wang CC, Chou CH, Kuo MY, Lin BR, et al. 2013. Connective tissue growth factor activates pluripotency genes and mesenchymal-epithelial transition in head and neck cancer cells. Cancer Res. 73: 4147-4157. https://doi.org/10.1158/0008-5472.CAN-12-4085
- Chang CC, Shih JY, Jeng YM, Su JL, Lin BZ, Chen ST, et al. 2004. Connective tissue growth factor and its role in lung adenocarcinoma invasion and metastasis. J. Natl. Cancer Inst. 96: 364-375. https://doi.org/10.1093/jnci/djh059
- Mullis TC, Tang X, Chong KT. 2008. Expression of connective tissue growth factor (CTGF/CCN2) in head and neck squamous cell carcinoma. J. Clin. Pathol. 61: 606-610. https://doi.org/10.1136/jcp.2007.052795
- Hiyama A, Morita K, Sakai D, Watanabe M. 2018. CCN family member 2/connective tissue growth factor (CCN2/CTGF) is regulated by Wnt-beta-catenin signaling in nucleus pulposus cells. Arthritis Res. Ther. 20: 217. https://doi.org/10.1186/s13075-018-1723-8
- Chen PS, Wang MY, Wu SN, Su JL, Hong CC, Chuang SE, et al. 2007. CTGF enhances the motility of breast cancer cells via an integrin-alphavbeta3-ERK1/2-dependent S100A4-upregulated pathway. J. Cell Sci. 120: 2053-2065. https://doi.org/10.1242/jcs.03460
- Yang Z, Sun L, Nie H, Liu H, Liu G, Guan G. 2015. Connective tissue growth factor induces tubular epithelial to mesenchymal transition through the activation of canonical Wnt signaling in vitro. Ren. Fail. 37: 129-135. https://doi.org/10.3109/0886022X.2014.967699
- Rooney B, O'Donovan H, Gaffney A, Browne M, Faherty N, Curran SP, et al. 2011. CTGF/CCN2 activates canonical Wnt signalling in mesangial cells through LRP6: implications for the pathogenesis of diabetic nephropathy. FEBS Lett. 585: 531-538. https://doi.org/10.1016/j.febslet.2011.01.004
- Niehrs C. 2012. The complex world of WNT receptor signalling. Nat. Rev. Mol. Cell Biol. 13: 767-779. https://doi.org/10.1038/nrm3470
- Pandur P, Maurus D, Kuhl M. 2002. Increasingly complex: new players enter the Wnt signaling network. Bioessays 24: 881-884. https://doi.org/10.1002/bies.10164
- James AW. 2013. Review of signaling pathways governing MSC osteogenic and adipogenic differentiation. Scientifica (Cairo) 2013: 684736. https://doi.org/10.1155/2013/684736
- Soon-Jung Park Y-JJ, Jumi Kim, Jeong-Min Shin, Jung-Il Chae, Hyung-Min Chung. 2010. Derivation of MSC like-cell population from feeder free cultured hESC and their proteomic analysis for comparison study with BM-MSC. Reprod. Dev. Biol 34: 143-151.
- Varghese S, Braggio DA, Gillespie J, Toland AE, Pollock R, Mayerson J, et al. 2017. TGF-beta and CTGF are mitogenic output mediators of Wnt/beta-catenin signaling in desmoid fibromatosis. Appl. Immunohistochem. Mol. Morphol. 25: 559-565. https://doi.org/10.1097/pai.0000000000000340
- Shin JM, Kim J, Kim HE, Lee MJ, Lee KI, Yoo EG, et al. 2011. Enhancement of differentiation efficiency of hESCs into vascular lineage cells in hypoxia via a paracrine mechanism. Stem Cell Res. 7: 173-185. https://doi.org/10.1016/j.scr.2011.06.002
- Garcia P, Leal P, Ili C, Brebi P, Alvarez H, Roa JC. 2013. Inhibition of connective tissue growth factor (CTGF/CCN2) in gallbladder cancer cells leads to decreased growth in vitro. Int. J. Exp. Pathol. 94: 195-202. https://doi.org/10.1111/iep.12023
- Zhang Z, Zheng F, Yu Z, Hao J, Chen M, Yu W, et al. 2017. XRCC5 cooperates with p300 to promote cyclooxygenase-2 expression and tumor growth in colon cancers. PLoS One 12: e0186900. https://doi.org/10.1371/journal.pone.0186900
- Ghosh G, Li G, Myung K, Hendrickson EA. 2007. The lethality of Ku86 (XRCC5) loss-of-function mutations in human cells is independent of p53 (TP53). Radiat. Res. 167: 66-79. https://doi.org/10.1667/rr0692.1
- Jin S, Inoue S, Weaver DT. 1998. Differential etoposide sensitivity of cells deficient in the Ku and DNA-PKcs components of the DNA-dependent protein kinase. Carcinogenesis 19: 965-971. https://doi.org/10.1093/carcin/19.6.965
- Mahaira LG, Katsara O, Pappou E, Iliopoulou EG, Fortis S, Antsaklis A, et al. 2014. IGF2BP1 expression in human mesenchymal stem cells significantly affects their proliferation and is under the epigenetic control of TET1/2 demethylases. Stem Cells Dev. 23: 2501-2512. https://doi.org/10.1089/scd.2013.0604
- Elcheva IA, Wood T, Chiarolanzio K, Chim B, Wong M, Singh V, et al. 2020. RNA-binding protein IGF2BP1 maintains leukemia stem cell properties by regulating HOXB4, MYB, and ALDH1A1. Leukemia 34: 1354-1363. https://doi.org/10.1038/s41375-019-0656-9
- Zhang J, Luo W, Chi X, Zhang L, Ren Q, Wang H, et al. 2020. IGF2BP1 silencing inhibits proliferation and induces apoptosis of high glucose-induced non-small cell lung cancer cells by regulating Netrin-1. Arch. Biochem. Biophys. 693: 108581. https://doi.org/10.1016/j.abb.2020.108581
- Cao X, Li F, Shao J, Lv J, Chang A, Dong W, et al. 2021. Circular RNA hsa_circ_0102231 sponges miR-145 to promote non-small cell lung cancer cell proliferation by up-regulating the expression of RBBP4. J. Biochem. 169: 65-73. https://doi.org/10.1093/jb/mvaa093
- Miao X, Sun T, Barletta H, Mager J, Cui W. 2020. Loss of RBBP4 results in defective inner cell mass, severe apoptosis, hyperacetylated histones and preimplantation lethality in micedagger. Biol. Reprod. 103: 13-23. https://doi.org/10.1093/biolre/ioaa046
- Li YD, Lv Z, Zhu WF. 2020. RBBP4 promotes colon cancer malignant progression via regulating Wnt/beta-catenin pathway. World J. Gastroenterol. 26: 5328-5342. https://doi.org/10.3748/wjg.v26.i35.5328
- Essers J, Theil AF, Baldeyron C, van Cappellen WA, Houtsmuller AB, Kanaar R, et al. 2005. Nuclear dynamics of PCNA in DNA replication and repair. Mol. Cell Biol. 25: 9350-9359. https://doi.org/10.1128/MCB.25.21.9350-9359.2005
- Dietrich DR. 1993. Toxicological and pathological applications of proliferating cell nuclear antigen (PCNA), a novel endogenous marker for cell proliferation. Crit. Rev. Toxicol. 23: 77-109. https://doi.org/10.3109/10408449309104075
- Lim MJ, Wang XW. 2006. Nucleophosmin and human cancer. Cancer Detect. Prev. 30: 481-490. https://doi.org/10.1016/j.cdp.2006.10.008
- Cela I, Di Matteo A, Federici L. 2020. Nucleophosmin in its interaction with ligands. Int. J. Mol. Sci. 21: 4885. https://doi.org/10.3390/ijms21144885
- Brodska B, Sasinkova M, Kuzelova K. 2019. Nucleophosmin in leukemia: Consequences of anchor loss. Int. J. Biochem. Cell Biol. 111: 52-62. https://doi.org/10.1016/j.biocel.2019.04.007
- Box JK, Paquet N, Adams MN, Boucher D, Bolderson E, O'Byrne KJ, et al. 2016. Nucleophosmin: from structure and function to disease development. BMC Mol. Biol. 17: 19. https://doi.org/10.1186/s12867-016-0073-9
- Shinohara H, Udagawa J, Morishita R, Ueda H, Otani H, Semba R, et al. 2004. Gi2 signaling enhances proliferation of neural progenitor cells in the developing brain. J. Biol. Chem. 279: 41141-41148. https://doi.org/10.1074/jbc.M406721200
- Dhanasekaran N, Tsim ST, Dermott JM, Onesime D. 1998. Regulation of cell proliferation by G proteins. Oncogene 17: 1383-1394. https://doi.org/10.1038/sj/onc/1202242
- Peters DG, Kudla DM, Deloia JA, Chu TJ, Fairfull L, Edwards RP, et al. 2005. Comparative gene expression analysis of ovarian carcinoma and normal ovarian epithelium by serial analysis of gene expression. Cancer Epidemiol. Biomarkers Prev. 14: 1717-1723. https://doi.org/10.1158/1055-9965.EPI-04-0704
- Fu X, Li Y, Alvero A, Li J, Wu Q, Xiao Q, et al. 2016. MicroRNA-222-3p/GNAI2/AKT axis inhibits epithelial ovarian cancer cell growth and associates with good overall survival. Oncotarget 7: 80633-80654. https://doi.org/10.18632/oncotarget.13017
- Jiang L, Dai Y, Liu X, Wang C, Wang A, Chen Z, et al. 2011. Identification and experimental validation of G protein alpha inhibiting activity polypeptide 2 (GNAI2) as a microRNA-138 target in tongue squamous cell carcinoma. Hum. Genet. 129: 189-197. https://doi.org/10.1007/s00439-010-0915-3
- Murray P, Edgar D. 2000. Regulation of programmed cell death by basement membranes in embryonic development. J. Cell Biol. 150: 1215-1221. https://doi.org/10.1083/jcb.150.5.1215
- Hassani F, Oryan S, Eftekhari-Yazdi P, Bazrgar M, Moini A, Nasiri N, et al. 2019. Downregulation of extracellular matrix and cell adhesion molecules in cumulus cells of infertile polycystic ovary syndrome women with and without insulin resistance. Cell J. 21: 35-42.
- Ozegowska K, Brazert M, Ciesiolka S, Nawrocki MJ, Kranc W, Celichowski P, et al. 2019. Genes involved in the processes of cell proliferation, migration, adhesion, and tissue development as new potential markers of porcine granulosa cellular processes in vitro: a microarray approach. DNA Cell Biol. 38: 549-560. https://doi.org/10.1089/dna.2018.4467
- Zhang Y, Xi S, Chen J, Zhou D, Gao H, Zhou Z, et al. 2017. Overexpression of LAMC1 predicts poor prognosis and enhances tumor cell invasion and migration in hepatocellular carcinoma. J. Cancer 8: 2992-3000. https://doi.org/10.7150/jca.21038
- Ye G, Qin Y, Wang S, Pan D, Xu S, Wu C, et al. 2019. Lamc1 promotes the Warburg effect in hepatocellular carcinoma cells by regulating PKM2 expression through AKT pathway. Cancer Biol. Ther. 20: 711-719. https://doi.org/10.1080/15384047.2018.1564558
- Coates PJ, Nenutil R, McGregor A, Picksley SM, Crouch DH, Hall PA, et al. 2001. Mammalian prohibitin proteins respond to mitochondrial stress and decrease during cellular senescence. Exp. Cell Res. 265: 262-273. https://doi.org/10.1006/excr.2001.5166
- Yoshinaka T, Kosako H, Yoshizumi T, Furukawa R, Hirano Y, Kuge O, et al. 2019. Structural basis of mitochondrial scaffolds by prohibitin complexes: Insight into a role of the coiled-coil region. iScience 19: 1065-1078. https://doi.org/10.1016/j.isci.2019.08.056
- Zhou Z, Ai H, Li K, Yao X, Zhu W, Liu L, et al. 2018. Prohibitin 2 localizes in nucleolus to regulate ribosomal RNA transcription and facilitate cell proliferation in RD cells. Sci. Rep. 8: 1479. https://doi.org/10.1038/s41598-018-19917-7
- Sievers C, Billig G, Gottschalk K, Rudel T. 2010. Prohibitins are required for cancer cell proliferation and adhesion. PLoS One 5: e12735. https://doi.org/10.1371/journal.pone.0012735
- Kowno M, Watanabe-Susaki K, Ishimine H, Komazaki S, Enomoto K, Seki Y, et al. 2014. Prohibitin 2 regulates the proliferation and lineage-specific differentiation of mouse embryonic stem cells in mitochondria. PLoS One 9: e81552. https://doi.org/10.1371/journal.pone.0081552
- Zhou T, Li Y, Yang L, Liu L, Ju Y, Li C. 2017. Silencing of ANXA3 expression by RNA interference inhibits the proliferation and invasion of breast cancer cells. Oncol. Rep. 37: 388-398. https://doi.org/10.3892/or.2016.5251
- Branishte T, Arsenescu-Georgescu C, Tomescu MC, Braniste A, Mitu F. 2013. Annexins, calcium-dependent phospholipid binding proteins in irreducible heart failure. Rev. Med. Chir. Soc. Med. Nat. Iasi. 117: 648-653.
- Xie YQ, Fu D, He ZH, Tan QD. 2013. Prognostic value of Annexin A3 in human colorectal cancer and its correlation with hypoxia-inducible factor-1alpha. Oncol. Lett. 6: 1631-1635. https://doi.org/10.3892/ol.2013.1620
- Wang L, Wu H, Wang L, Zhang H, Lu J, Liang Z, et al. 2017. Asporin promotes pancreatic cancer cell invasion and migration by regulating the epithelial-to-mesenchymal transition (EMT) through both autocrine and paracrine mechanisms. Cancer Lett. 398: 24-36. https://doi.org/10.1016/j.canlet.2017.04.001
- Roessler M, Rollinger W, Mantovani-Endl L, Hagmann ML, Palme S, Berndt P, et al. 2006. Identification of PSME3 as a novel serum tumor marker for colorectal cancer by combining two-dimensional polyacrylamide gel electrophoresis with a strictly mass spectrometry-based approach for data analysis. Mol. Cell. Proteomics 5: 2092-2101. https://doi.org/10.1074/mcp.M600118-MCP200
- VIJAY Kumar KALASKAR NDT, Aman George, Tiziana Cogliati and Brian Patrick Brooks. 2019. Mutations in proteasome 26S subunit, non-ATPase 5 gene (psmd5) cause ocular coloboma and vertebral defects. ARVO Annual Meeting Abstract.
- Kaneko T, Hamazaki J, Iemura S, Sasaki K, Furuyama K, Natsume T, et al. 2009. Assembly pathway of the Mammalian proteasome base subcomplex is mediated by multiple specific chaperones. Cell 137: 914-925. https://doi.org/10.1016/j.cell.2009.05.008
- Luo Q, Kang Q, Si W, Jiang W, Park JK, Peng Y, et al. 2004. Connective tissue growth factor (CTGF) is regulated by Wnt and bone morphogenetic proteins signaling in osteoblast differentiation of mesenchymal stem cells. J. Biol. Chem. 279: 55958-55968. https://doi.org/10.1074/jbc.M407810200
- Shaw J, Kirshenbaum LA. 2006. Prime time for JNK-mediated Akt reactivation in hypoxia-reoxygenation. Circ. Res. 98: 7-9. https://doi.org/10.1161/01.RES.0000200397.22663.b6
- Zhang W, Liu HT. 2002. MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res. 12: 9-18. https://doi.org/10.1038/sj.cr.7290105
- Johnson GL, Lapadat R. 2002. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298: 1911-1912. https://doi.org/10.1126/science.1072682
- Zhang L, Zhang Y, Wu Y, Yu J, Zhang Y, Zeng F, et al. 2019. Role of the balance of Akt and MAPK pathways in the exercise-regulated phenotype switching in spontaneously hypertensive rats. Int. J. Mol. Sci. 20: 5690. https://doi.org/10.3390/ijms20225690
- Bubici C, Papa S. 2014. JNK signalling in cancer: in need of new, smarter therapeutic targets. Br. J. Pharmacol. 171: 24-37. https://doi.org/10.1111/bph.12432
- Davies C, Tournier C. 2012. Exploring the function of the JNK (c-Jun N-terminal kinase) signalling pathway in physiological and pathological processes to design novel therapeutic strategies. Biochem. Soc. Trans. 40: 85-89. https://doi.org/10.1042/BST20110641
- Coulthard LR, White DE, Jones DL, McDermott MF, Burchill SA. 2009. p38(MAPK): stress responses from molecular mechanisms to therapeutics. Trends Mol. Med. 15: 369-379. https://doi.org/10.1016/j.molmed.2009.06.005