DOI QR코드

DOI QR Code

A Study on the Influencing Factors of Overuse of the Seniors's Mobile Short Form Video

중장년층 모바일 숏폼 동영상 과다사용 행위의 영향요인 연구

  • Han, Jing (Department of Mass Communication, Kyungsung University) ;
  • Bae, Seung-Ju (Kyungsung University) ;
  • Kwon, Mahn-Woo (Department of Media Content, Kyungsung University) ;
  • Lee, Sang-Ho (Department of Media Content, Kyungsung University)
  • 한정 (경성대학교 언론홍보학과) ;
  • 배승주 (경성대학교) ;
  • 권만우 (경성대학교 미디어콘텐츠학과) ;
  • 이상호 (경성대학교 미디어콘텐츠학과)
  • Received : 2021.12.15
  • Accepted : 2022.03.20
  • Published : 2022.03.28

Abstract

Focusing on the TikTok, this paper studies the factors that influence the use intention, flow and addiction of the elderly in short videos from three aspects of media attraction, perceived usefulness and user characteristics through quantitative research methods. In recent years, influenced by various factors, more and more seniors have begun to indulge in short form videos, which will do harm to their physical and mental health. Therefore, the researchers believe it is necessary to identify the behavioral intention of seniors and the path to addiction. According to the research results, the attractiveness of TikTok and the characteristics of seniors have a positive impact on the usefulness of media. In addition, the study confirms that media usefulness has an impact on use intention and use behavior, which may develop into immersion and addiction. This study not only supplements the classical TAM theory, but also provides a reference for helping seniors to use the Internet in a healthy way. The researchers look forward to expanding the research on the various Internet platforms used by seniors in different countries and regions.

본 연구는 숏폼 동영상 플랫폼 TikTok을 중심으로 미디어 매력성, 미디어 유용성, 이용자 특성 등 세 가지 측면에서 중장년층의 사용 의도, 몰입, 중독에 영향을 미치는 요인을 정량적 연구 방법으로 연구하였다. 최근 중장년층의 숏폼 동영상에 대한 이용자수가 늘어남에 따라 그들의 신체적, 심리적 건강에 대한 위험성이 야기되고 있다. 따라서 연구자들은 중장년층의 숏폼 동영상 이용의도와 중독 경로를 확인할 필요가 있다고 보았다. 연구 결과 TikTok의 매력성과 중장년 이용자의 특성이 매체의 유용성에 적극적인 영향을 주었으며, 또한 미디어의 유용성이 사용의도와 사용행위에 영향을 미치고 몰입과 중독으로 발전할 수 있음을 확인하였다. 본 연구는 고전적인 TAM 이론을 보완할 뿐만 아니라 중장년층이 인터넷을 건강하게 이용할 수 있도록 돕는 데 참고가 될 것으로 보이며, 향후 더 많은 지역의 중장년층의 다양한 인터넷 사용을 위한 미디어 서비스 연구가 확대되길 기대한다.

Keywords

Acknowledgement

This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education (NRF-2021-R1I1A3054903).

References

  1. M. Y. Xu. (2021). Strategic Choice of TikTok App Based on SWOT Analysis. Modern Business, 16(3), 8-11.
  2. Quest Mobile Institute. (2020). QuestMobile 2020 Silver Economy Insight Report. QuestMobile [Online]. https://www.questmobile.com.cn/research/report-new/115
  3. A. Nakamura. (2020). TikTok Teens Follow New Stars: Senior Citizens. The Wall Street Journal [Online]. https://www.wsj.com/articles/tiktok-teens-follow-new-stars-senior-citizens-11605724082
  4. B. W. Wirtz, R. Piehler & R. Ullrich. (2013). Determinants of Social Media Website Attractiveness. Journal of Electronic Commerce Research, 14(1), 11-33.
  5. M. Maguire. (2004). Does Usability=Attractiveness. In Design and Emotion . London: Taylor & Francis Group.
  6. C. W. Hsu & J. R. Fu. (2018). Enhancing the Influence of Pop-up Advertisements on Advertising Effects from the Perspective of Personalization and Placement. The 22nd Pacific Asia Conference on Information Systems. Yokohama: PACIS.
  7. L. M. Yang. (2020). Application Impact and Reflection of Personalization in the Dissemination of News and Information on Mobile Internet. Journalism & Communication Review, 37(2), 47-58.
  8. Z. H. Wang & Q. H. Liu. (2018). Research on Personalized Recommendation Mechanism of Image Creative Content in Algorithm Era. Movie Review, 40(18), 56-60.
  9. W. K. Lv. (2007). Usability Research in Product Design. Art and Design, 5(4), 110-112.
  10. F. D. Davis. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 13(3), 319-339. https://doi.org/10.2307/249008
  11. N. Park, K. F. Kee & S. Valenzuela. (2009). Being Immersed in Social Networking Environment: Facebook Groups, Uses and Gratifications, and Social Outcomes. Cyberpsychology & Behavior, 12(6), 729-733. https://doi.org/10.1089/cpb.2009.0003
  12. A. M. Rubin. (2008). The Uses-and-Gratifications Perspective of Media Effects. Media Effects: Advances in Theory and Research, New York: Routledge.
  13. G. Low, D. H. Goh & C. S. Lee.(2010). A Multifaceted Approach to Exploring Mobile Annotations. The Role of Digital Libraries in a Time of Global Change, Berlin: Springer.
  14. A. M. Rubin & S. Windahl. (1986). The Uses and Dependency Model of Mass Communication. Critical Studies in Mass Communication, 3(2), 184-199. https://doi.org/10.1080/15295039609366643
  15. Y. H. H. Chen & D. Corkindale. (2008). Towards an Understanding of the Behavioral Intention to Use Online News Services: An exploratory study. Internet Research, 18(3), 286-312. https://doi.org/10.1108/10662240810883326
  16. N. Park, K. F. Kee & S. Valenzuela. (2009). Being Immersed in Social Networking Environment: Facebook Groups, Uses and Gratifications, and Social Outcomes. Cyber Psychology & Behavior, 12(6), 729-733. https://doi.org/10.1089/cpb.2009.0003
  17. R. H. Ducoffe. (1995). How Consumers Assess the Value of Advertising. Journal of Current Issues & Research in Advertising, 17(1), 1-18. https://doi.org/10.1080/10641734.1995.10505022
  18. Q. Chen & W. D. Wells. (1999). Attitude Toward the Site .Journal of Advertising Research, 39(5), 27-37.
  19. A. Diddi & R. LaRose. (2006). Getting Hooked on News: Uses and Gratifications and the Formation of News Habits Among College Students in an Internet Environment. Journal of Broadcasting & Electronic Media, 50(2), 193-210. https://doi.org/10.1207/s15506878jobem5002_2
  20. L. A. Peplau & D. Perlman. (1982). Loneliness: A Sourcebook of Current Theory, Research and Therapy, New York: John Wiley Sons.
  21. C. R. Victor & A. Bowling. (2012). A longitudinal analysis of loneliness among older people in Great Britain, The Journal of psychology, 146(3), 313-331. https://doi.org/10.1080/00223980.2011.609572
  22. Y. C. Lai. (2012). Research progress of loneliness in the elderly. Chinese Journal of Gerontology, 32(11), 2429-2432. https://doi.org/10.3969/j.issn.1005-9202.2012.11.112
  23. M. Burke, C. Marlow & T. Lento. (2010). Social Network Activity and Social Well-being, New York: Association for Computing Machinery.
  24. D. Zhu, Y. J. He & F. Tian, (2018). Social Life within Here: How SNS Empowers Different Generations in China, Beijing: Social Sciences Academic Press.
  25. R J. Gatchel, P. B. Polatin, T. G. Mayer, R. Robinson & J. Dersh. (1998). Use of the SF-36 Health Status Survey with a Chronically Disabled Back Pain Population: Strengths and Limitations. Journal of Occupational Rehabilitation, 8(4), 237-246. https://doi.org/10.1023/A:1023034801571
  26. Y. Q. Huang. (2012). Epidemiological study on mental disorder in China. Chinese Journal of Epidemiology, 33(1), 15-16. https://doi.org/10.3760/cma.j.issn.0254-6450.2012.01.003
  27. S. R. Cotten, W. A. Anderson & B. M. McCullough. (2013). Impact of Internet Use on Loneliness and Contact with Others Among Older Adults: Cross-Sectional Analysis. Journal of Medical Internet Research, 15(2), 128-140.
  28. A. K. Leist. (2013). Social Media Use of Older Adults: A Mini-Review. Gerontology, 59(4), 378-384. https://doi.org/10.1159/000346818
  29. C. H. Cooley & P. Rieff. (1909). Social Organization: A Study of The Larger Mind, New York: Routledge.
  30. J. Y. Shi & G. Chen. (2019). Digital Survival of the Elderly People under the Vision of Social Media: Problems and Reflections. Journal of Yangzhou University (Humanities & Social Sciences), 23(6), 119-128.
  31. Y. Q. Zhou & H. Q. Qiong. (2020). The Overview and Influential Factors of Digital Back-feeding Among the Three Generations of Chinese Families. Chinese Journal of Journalism & Communication, 42(3), 6-31.
  32. M. Koufaris. (2002). Applying the Technology Acceptance Model and Flow Theory to Online Consumer Behavior. Information Systems Research, 13(2), 205-223. https://doi.org/10.1287/isre.13.2.205.83
  33. S. H. Lee. (2013). Effect of SNS User's Emotional Perception and Flow on Word of Mouth: Focusing on the Facebook User Group. Journal of Marketing Management Research, 18(2), 1-23.
  34. M. S. Kwon, S. J. Han & Y. R. Yeun. (2020). Effectiveness of Smartphone Addiction Intervention for University Students: A Systematic Review and Meta Analysis. Journal of the Korea Convergence Society, 11(5), 399-412. https://doi.org/10.15207/JKCS.2020.11.5.399
  35. J. N. Wang, S. J. Bae, S. H. Lee & S. H. Lee. (2021). A Study on the Influence Factors of Fashion Virtual Influencer's Visual Factors Leading to Follower's Behavioral Intention & Addiction. Journal of the Korea Convergence Society, 12(12), 213-222. https://doi.org/10.15207/JKCS.2021.12.12.213
  36. Y. M. Zhou. & S. H. Lee. (2021). A Study on the Influencing Factors on Flow & Addiction of Tiktok Service Users. Journal of the Korean Convergence Society, 12(3), 125-132.
  37. B. Pathak, R. Garfinkel, R. D. Gopal, R. Venkatesan & Y. Fang. (2010). Empirical Analysis of the Impact of Recommender Systems on Sales. Journal of Management Information Systems, 27(2), 159-188. https://doi.org/10.2753/MIS0742-1222270205
  38. D. Shin. (2007). User Acceptance of Mobile Internet: Implication for Convergence Technologies. Interacting with Computer, 19(4), 5-59. https://doi.org/10.1016/j.intcom.2007.04.001
  39. J. Lu. (2014). Are Personal Innovativeness and Social Influence Critical to Continue with Mobile Commerce? Internet Research, 24(2), 134-159. https://doi.org/10.1108/IntR-05-2012-0100
  40. Q. Q. Liu. M. Y. Zuo & M. C. Liu. (2012). Analysis of Continuance Usage Model for the Elderly Using Internet. Management Review, 24(5), 89-101.
  41. E. Abushanab. & J. M. Pearson. (2007). Internet Banking in Jordan The Unified Theory of Acceptance and Use of Technology(UTAUT) Perspective. Journal of Systems and Information Technology, 9 (1), 78-97. https://doi.org/10.1108/13287260710817700
  42. G. Premkumar & A. Bhattacherjee. (2008). Explaining Information Technology Usage: A Test of Competing Models. Omega, 36(1), 64-75. https://doi.org/10.1016/j.omega.2005.12.002
  43. S. O. Lee & S. H. Lee. (2018). A Study on the Factors Influencing Acceptance of Social Media-based Smart Commerce Service through Personal Innovativeness. Journal of Digital Contents Society, 9(3), 547-559.
  44. Y. A. Jin, W. L. Liu, M. H. Zhao, D. H. Wang & W. B. Hu. (2021). Short Video APP Use and the Life of Mid-age and Older Adults: An Exploratory Study Based on a Social Survey. Population Research, 45(3), 31-45.
  45. M. Fishbein & I. Ajzen. (1975). Belief, Attitude, Intention and Behavior: An Introduction to Theory and Research., Boston: Addison-Wesley Publishing Company.
  46. D. L. Hoffman & T. P. Novak. (1996). Marketing in Hypermedia Computer-Mediated Environments: Conceptual Foundations. Journal of Marketing, 60(3), 50-68. https://doi.org/10.2307/1251841
  47. D. L. Hoffman & T. P. Novak. (2009). Flow Online: Lessons Learned and Future Prospects. Journal of Interactive Marketing, 23(1), 23-34. https://doi.org/10.1016/j.intmar.2008.10.003
  48. J. Schuler. (2012). The dark side of the moon. In S. Engeser(ed.). Advances in Flow Research. New York: Springer.
  49. S. H. Lee & A. R. Go. (2013). A Study on the Factors Influencing the Social Media Addiction with Special Reference to Perception and Flow of Facebook User. The Korean Society for Journalism & Communication Studies, 57(6), 176-210.