DOI QR코드

DOI QR Code

Leishmania Vaccines: the Current Situation with Its Promising Aspect for the Future

  • Rasit, Dinc (INVAMED RD Global)
  • Received : 2022.09.09
  • Accepted : 2022.11.25
  • Published : 2022.12.31

Abstract

Leishmaniasis is a serious parasitic disease caused by Leishmania spp. transmitted through sandfly bites. This disease is a major public health concern worldwide. It can occur in 3 different clinical forms: cutaneous, mucocutaneous, and visceral leishmaniasis (CL, MCL, and VL, respectively), caused by different Leishmania spp. Currently, licensed vaccines are unavailable for the treatment of human leishmaniasis. The treatment and prevention of this disease rely mainly on chemotherapeutics, which are highly toxic and have an increasing resistance problem. The development of a safe, effective, and affordable vaccine for all forms of vector-borne disease is urgently needed to block transmission of the parasite between the host and vector. Immunological mechanisms in the pathogenesis of leishmaniasis are complex. IL-12-driven Th1-type immune response plays a crucial role in host protection. The essential purpose of vaccination is to establish a protective immune response. To date, numerous vaccine studies have been conducted using live/attenuated/killed parasites, fractionated parasites, subunits, recombinant or DNA technology, delivery systems, and chimeric peptides. Most of these studies were limited to animals. In addition, standardization has not been achieved in these studies due to the differences in the virulence dynamics of the Leishmania spp. and the feasibility of the adjuvants. More studies are needed to develop a safe and effective vaccine, which is the most promising approach against Leishmania infection.

Keywords

References

  1. Dinc R. New developments in the treatment of cutaneous leishmaniasis. Asian Pac J Trop Med 2022; 15: 196-205. https://doi.org/10.4103/1995-7645.345944
  2. Yesilova Y, Aksoy M, Surucu HA, Uluat A, Ardic N, Yesilova A. Lip leishmaniasis: Clinical characteristics of 621 patients. Int J Crit Illn Inj Sci. 2015; 5: 265-266. https://doi.org/10.4103/2229-5151.170849
  3. Alvar J, den Boer M, Dagne DA. Towards the elimination of visceral leishmaniasis as a public health problem in east Africa: reflections on an enhanced control strategy and a call for action. Lancet Glob Health 2021; 9: e1763-1769. https://doi.org/10.1016/S2214-109X(21)00392-2
  4. Bezemer JM, Meesters K, Naveda CL, Machado PRL, Calvopina M, Leeflang MMG, Schallig HDFH, de Vries HJC. Clinical criteria for Mucosal leishmaniasis diagnosis in rural South America: a systematic literature review. PLoS Negl Trop Dis 2022 16: e0010621. https://doi.org/10.1371/journal.pntd.0010621
  5. Martins-Melo FR, Lima Mda S, Ramos AN Jr, Alencar CH, Heukelbach J. Mortality and case fatality due to visceral leishmaniasis in Brazil: a nationwide analysis of epidemiology, trends and spatial patterns. PLoS One. 2014; 9: e93770. https://doi.org/10.1371/journal.pone.0093770
  6. World Health Organization. Leishmaniasis: Situation and trend [Internet]; [cited 2022 Aug 29]. Available from: https://www.who.int/data/gho/data/themes/topics/topic-details/GHO/leishmaniasis#:~:text=As%20of%20September%202021%2C%2055,Somalia%2C%20South%20Sudan%20and%20Sudan
  7. Srivastava S, Shankar P, Mishra J, Singh S. Possibilities and challenges for developing a successful vaccine for leishmaniasis. Parasit Vectors 2016; 9: 277. https://doi.org/10.1186/s13071-016-1553-y
  8. Malvolti S, Malhame M, Mantel CF, Le Rutte EA, Kaye PM. Human leishmaniasis vaccines: Use cases, target population and potential global demand. PLoS Negl Trop Dis 2021; 15: e0009742. https://doi.org/10.1371/journal.pntd.0009742
  9. Jha MK, Sarode AY, Bodhale N, Mukherjee D, Pandey SP, Srivastava N, Rub A, Silvestre R, Sarkar A, Saha B. Development and characterization of an avirulent Leishmania major strain. J Immunol 2020; 204: 2734-2753. https://doi.org/10.4049/jimmunol.1901362
  10. Silva CFM, Pinto DCGA, Fernandes PA, Silva AMS. Evolution of acridines and xanthenes as a core structure for the development of antileishmanial agents. Pharmaceuticals (Basel) 2022; 15: 148. https://doi.org/10.3390/ph15020148
  11. Santana W, de Oliveira SS, Ramos MH, Santos ALS, Dolabella SS, Souto EB, Severino P, Jain S. Exploring innovative leishmaniasis treatment: drug targets from pre-clinical to clinical findings. Chem Biodivers 2021; 18: e2100336. https://doi.org/10.1002/cbdv.202100336
  12. Ardic N, Ardic AF, Gunel Z. Leishmaniasis during the increased Syrian refugee traffic. Glob J Infect Dis Clin Res 2018; 4: 013-016. http://dx.doi.org/10.17352/2455-5363.000020
  13. de Morais RC, de Melo MG, de Goes TC, e Silva RP, de Morais RF, de Oliveira Guerra JA, de Brito ME, Brandao-Filho SP, de Paiva Cavalcanti M. Clinical-therapeutic follow-up of patients with American cutaneous leishmaniasis caused by different Leishmania spp. in Brazil. Exp Parasitol 2022; 240: 108338. https://doi.org/10.1016/j.exppara.2022.108338
  14. World Health Organization. Leishmaniasis[Internet]; [cited 2022 Aug 29]. Available from: https://www.who.int/news-room/fact-sheets/detail/leishmaniasis
  15. Alves F, Bilbe G, Blesson S, Goyal V, Monnerat S, Mowbray C, Muthoni Ouattara G, Pecoul B, Rijal S, Rode J, Solomos A. Recent development of visceral leishmaniasis treatments: successes, pitfalls, and perspectives. Clin Microbiol Rev 2018; 31: e00048-18. https://doi.org/10.1128/CMR.00048-18
  16. Zhang WW, Karmakar S, Gannavaram S, Dey R, Lypaczewski P, Ismail N, Siddiqui A, Simonyan V, Oliveira F, Coutinho-Abreu IV, DeSouza-Vieira T, Meneses C, Oristian J, Serafim TD, Musa A, Nakamura R, Saljoughian N, Volpedo G, Satoskar M, Satoskar S, Dagur PK, McCoy JP, Kamhawi S, Valenzuela JG, Hamano S, Satoskar AR, Matlashewski G, Nakhasi HL. A second generation leishmanization vaccine with a markerless attenuated Leishmania major strain using CRISPR gene editing. Nat Commun 2020; 11: 3461. https://doi.org/10.1038/s41467-020-17154-z
  17. Miramin-Mohammadi A, Javadi A, Eskandari SE, Nateghi-Rostami M, Khamesipour A. Immune responses in cutaneous leishmaniasis: In vitro Thelper1/Thelper2 cytokine profiles using live versus killed Leishmania major. J Arthropod Borne Dis 2021; 15: 126-135. https://doi.org/10.18502/jad.v15i1.6491
  18. Carregaro V, Costa DL, Brodskyn C, Barral AM, Barral-Netto M, Cunha FQ, Silva JS. Dual effect of Lutzomyia longipalpis saliva on Leishmania braziliensis infection is mediated by distinct saliva-induced cellular recruitment into BALB/c mice ear. BMC Microbiol 2013; 13: 102. https://doi.org/10.1186/1471-2180-13-102
  19. Helou DG, Mauras A, Fasquelle F, Lanza JS, Loiseau PM, Betbeder D, Cojean S. Intranasal vaccine from whole Leishmania donovani antigens provides protection and induces specific immune response against visceral leishmaniasis. PLoS Negl Trop Dis. 2021; 15: e0009627. https://doi.org/10.1371/journal.pntd.0009627
  20. Karmakar S, Ismail N, Oliveira F, Oristian J, Zhang WW, Kaviraj S, Singh KP, Mondal A, Das S, Pandey K, Bhattacharya P, Volpedo G, Gannavaram S, Satoskar M, Satoskar S, Sastry RM, Oljuskin T, Sepahpour T, Meneses C, Hamano S, Das P, Matlashewski G, Singh S, Kamhawi S, Dey R, Valenzuela JG, Satoskar A, Nakhasi HL. Preclinical validation of a live attenuated dermotropic Leishmania vaccine against vector transmitted fatal visceral leishmaniasis. Commun Biol 2021; 4: 929. https://doi.org/10.1038/s42003-021-02446-x
  21. Saljoughian N, Taheri T, Rafati S. Live vaccination tactics: possible approaches for controlling visceral leishmaniasis. Front Immunol 2014; 5: 134. https://doi.org/10.3389/fimmu.2014.00134
  22. Nylen S, Maasho K, Soderstrom K, Ilg T, Akuffo H. Live Leishmania promastigotes can directly activate primary human natural killer cells to produce interferon-gamma. Clin Exp Immunol 2003; 131: 457-467. https://doi.org/10.1046/j.1365-2249.2003.02096.x
  23. Kopelyanskiy D, Desponds C, Prevel F, Rossi M, Migliorini R, Snaka T, Eren RO, Claudinot S, Lye LF, Pasparakis M, Beverley SM, Fasel N. Leishmania guyanensis suppressed inducible nitric oxide synthase provoked by its viral endosymbiont. Front Cell Infect Microbiol 2022; 12: 944819. https://doi.org/10.3389/fcimb.2022.944819
  24. Cecilio P, Cordeiro-da-Silva A, Oliveira F. Sand flies: Basic information on the vectors of leishmaniasis and their interactions with Leishmania parasites. Commun Biol 2022; 5: 305. https://doi.org/10.1038/s42003-022-03240-z
  25. Cummings HE, Tuladhar R, Satoskar AR. Cytokines and their STATs in cutaneous and visceral leishmaniasis. J Biomed Biotechnol 2010; 2010: 294389. https://doi.org/10.1155/2010/294389
  26. Ikeogu NM, Akaluka GN, Edechi CA, Salako ES, Onyilagha C, Barazandeh AF, Uzonna JE. Leishmania immunity: advancing immunotherapy and vaccine development. Microorganisms 2020; 8: 1201. https://doi.org/10.3390/microorganisms8081201
  27. Natarajan G, Oghumu S, Varikuti S, Thomas A, Satoskar A. Mechanisms of immunopathology of leishmaniasis. In Satoskar AR, Durvasula R eds, Pathogenesis of Leishmaniasis. Springer. New York, USA. 2014, pp 1-13.
  28. Volpedo G, Pacheco-Fernandez T, Bhattacharya P, Oljuskin T, Dey R, Gannavaram S, Satoskar AR, Nakhasi HL. Determinants of innate immunity in visceral leishmaniasis and their implication in vaccine development. Front Immunol 2021; 12: 748325. https://doi.org/10.3389/fimmu.2021.748325
  29. Abdellahi L, Iraji F, Mahmoudabadi A, Hejazi SH. Vaccination in leishmaniasis: a review article. Iran Biomed J 2022; 26: 1-35. https://doi.org/10.52547/ibj.26.1.35
  30. Hosseini Farash BR, Mohebali M, Kazemi B, Fata A, Hajjaran H, Akhoundi B, Raoofian R, Mastroeni P, Moghaddas E, Khaledi A, Salehi Sangani G. Validation of a mixture of rK26 and rK39 antigens from Iranian strain of Leishmania infantum to detect anti-Leishmania antibodies in human and reservoir hosts. Sci Rep 2022; 12: 10426. https://doi.org/10.1038/s41598-022-14490-6
  31. Gomes DC, Souza BL, Schwedersky RP, Covre LP, de Matos Guedes HL, Lopes UG, Re MI, Rossi-Bergmann B. Intranasal immunization with chitosan microparticles enhances LACK-DNA vaccine protection and induces specific long-lasting immunity against visceral leishmaniasis. Microbes Infect 2022; 24: 104884. https://doi.org/10.1016/j.micinf.2021.104884
  32. Sumova P, Sanjoba C, Willen L, Polanska N, Matsumoto Y, Noiri E, Paul SK, Ozbel Y, Volf P. PpSP32-like protein as a marker of human exposure to Phlebotomus argentipes in Leishmania donovani foci in Bangladesh. Int J Parasitol 2021; 51: 1059-1068. https://doi.org/10.1016/j.ijpara.2021.05.006
  33. Goyal DK, Keshav P, Kaur S. Potential of TLR agonist as an adjuvant in Leishmania vaccine against visceral leishmaniasis in BALB/c mice. Microb Pathog 2021; 158: 105021. https://doi.org/10.1016/j.micpath.2021.105021
  34. Bhaumik SK, Singh MK, Karmakar S, De T. UDP-Gal: N-acetylglucosamine beta 1-4 galactosyltransferase expressing live attenuated parasites as vaccine for visceral leishmaniasis. Glycoconj J 2009; 26: 663-673. https://doi.org/10.1007/s10719-008-9212-y
  35. De Luca PM, Macedo AB. Cutaneous leishmaniasis vaccination: a matter of quality. Front Immunol 2016; 7: 151. https://doi.org/10.3389/fimmu.2016.00151
  36. Pacheco-Fernandez T, Volpedo G, Gannavaram S, Bhattacharya P, Dey R, Satoskar A, Matlashewski G, Nakhasi HL. Revival of leishmanization and leishmanin. Front Cell Infect Microbiol 2021; 11: 639801. https://doi.org/10.3389/fcimb.2021.639801
  37. Ostolin TL, Gusmao MR, Mathias FA, de Oliveira Cardoso JM, Roatt BM, de Oliveira Aguiar-Soares RD, Ruiz JC, de Melo Resende D, de Brito RC, Reis AB. A chimeric vaccine combined with adjuvant system induces immunogenicity and protection against visceral leishmaniasis in BALB/c mice. Vaccine 2021; 39: 2755-2763. https://doi.org/10.1016/j.vaccine.2021.04.004
  38. Athanasiou E, Agallou M, Tastsoglou S, Kammona O, Hatzigeorgiou A, Kiparissides C, Karagouni E. A poly (lactic-co-glycolic) acid nanovaccine based on chimeric peptides from different Leishmania infantum proteins induces dendritic cells maturation and promotes peptide-specific IFNγ-producing CD8+ T cells essential for the protection against experimental visceral leishmaniasis. Front Immunol 2017; 8: 684. https://doi.org/10.3389/fimmu.2017.00684
  39. Mohebali M, Nadim A, Khamesipour A. An overview of leishmanization experience: A successful control measure and a tool to evaluate candidate vaccines. Acta Trop 2019; 200: 105173. https://doi.org/10.1016/j.actatropica.2019.105173
  40. Alvar J, Croft SL, Kaye P, Khamesipour A, Sundar S, Reed SG. Case study for a vaccine against leishmaniasis. Vaccine 2013; 31: B244-B249. https://doi.org/10.1016/j.vaccine.2012.11.080
  41. Oliveira F, Rowton E, Aslan H, Gomes R, Castrovinci PA, Alvarenga PH, Abdeladhim M, Teixeira C, Meneses C, Kleeman LT, Guimaraes-Costa AB, Rowland TE, Gilmore D, Doumbia S, Reed SG, Lawyer PG, Andersen JF, Kamhawi S, Valenzuela JG. A sand fly salivary protein vaccine shows efficacy against vector-transmitted cutaneous leishmaniasis in nonhuman primates. Sci Transl Med 2015; 7: 290ra90. https://doi.org/10.1126/scitranslmed.aaa3043
  42. Zahedifard F, Gholami E, Taheri T, Taslimi Y, Doustdari F, Seyed N, Torkashvand F, Meneses C, Papadopoulou B, Kamhawi S, Valenzuela JG, Rafati S. Enhanced protective efficacy of nonpathogenic recombinant Leishmania tarentolae expressing cysteine proteinases combined with a sand fly salivary antigen. PLoS Negl Trop Dis 2014; 8: e2751. https://doi.org/10.1371/journal.pntd.0009123
  43. Davarpanah E, Seyed N, Bahrami F, Rafati S, Safaralizadeh R, Taheri T. Lactococcus lactis expressing sand fly PpSP15 salivary protein confers long-term protection against Leishmania major in BALB/c mice. PLoS Negl Trop Dis 2020; 14: e0007939. https://doi.org/10.1371/journal.pntd.0007939
  44. Mitchell GF, Handman E, Spithill TW. Vaccination against cutaneous leishmaniasis in mice using nonpathogenic cloned promastigotes of Leishmania major and importance of route of injection. Aust J Exp Biol Med Sci 1984; 62: 145-153. https://doi.org/10.1038/icb.1984.14
  45. Gorczynski RM. Immunization of susceptible BALB/c mice against Leishmania braziliensis,: II. Use of temperature-sensitive avirulent clones of parasite for vaccination purposes. Cellular Immunol 1985; 94: 11-20. https://doi.org/10.1016/0008-8749(85)90081-4
  46. Rivier D, Shah R, Bovay P, Mauel J. Vaccine development against cutaneous leishmaniasis. Subcutaneous administration of radioattenuated parasites protects CBA mice against virulent Leishmania major challenge. Parasite Immunol 1993; 15: 75-84. https://doi.org/10.1111/j.1365-3024.1993.tb00587.x
  47. Kimsey PB, Theodos CM, Mitchen TK, Turco SJ, Titus RG. An avirulent lipophosphoglycan-deficient Leishmania major clone induces CD4+ T cells which protect susceptible BALB/c mice against infection with virulent L. major. Infect Immun 1993; 61: 5205-5213. https://doi.org/10.1128/iai.61.12.5205-5213.1993
  48. Daneshvar H, Coombs GH, Hagan P, Phillips RS. Leishmania mexicana and Leishmania major: attenuation of wild-type parasites and vaccination with the attenuated lines. J Infect Dis 2003; 187: 1662-1668. https://doi.org/10.1086/374783
  49. Convit J, Ulrich M, Polegre MA, Avila A, Rodriguez N, Mazzedo MI, Blanco B. Therapy of Venezuelan patients with severe mucocutaneous or early lesions of diffuse cutaneous leishmaniasis with a vaccine containing pasteurized Leishmania promastigotes and bacillus Calmette-Guerin: preliminary report. Mem Inst Oswaldo Cruz 2004; 99: 57-62. https://doi.org/10.1590/S0074-02762004000100010
  50. Araujo MS, de Andrade RA, Vianna LR, Mayrink W, Reis AB, Sathler-Avelar R, Teixeira-Carvalho A, Andrade MC, Mello MN, Martins-Filho OA. Despite Leishvaccine and Leishmune trigger distinct immune profiles, their ability to activate phagocytes and CD8+ T-cells support their high-quality immunogenic potential against canine visceral leishmaniasis. Vaccine 2008; 26: 2211-2224. https://doi.org/10.1016/j.vaccine.2008.02.044
  51. Moafi M, Rezvan H, Sherkat R, Taleban R. Leishmania vaccines entered in clinical trials: A review of literature. Int J Prev Med 2019; 10: 95. https://doi.org/10.4103/ijpvm.IJPVM_116_18
  52. Convit J, Ulrich M, Zerpa O, Borges R, Aranzazu N, Valera M, Villarroel H, Zapata Z, Tomedes I. Immunotherapy of american cutaneous leishmaniasis in Venezuela during the period 1990-99. Trans R Soc Trop Med Hyg 2003; 97: 469-472. https://doi.org/10.1016/S0035-9203(03)90093-9
  53. Khamesipour A. Therapeutic vaccines for leishmaniasis. Expert Opin Biol Ther 2014; 141641-9. https://doi.org/10.1517/14712598.2014.945415
  54. Velez R, Gallego M. Commercially approved vaccines for canine leishmaniosis: a review of available data on their safety and efficacy. Trop Med Int Health 2020; 25: 540-557. https://doi.org/10.1111/tmi.13382
  55. Borja-Cabrera GP, Santos FN, Bauer FS, Parra LE, Menz I, Morgado AA, Soares IS, Batista LMM, Palatnik-de-Sousa CB. Immunogenicity assay of the Leishmune® vaccine against canine visceral leishmaniasis in Brazil. Vaccine 2008; 26: 4991-4997. https://doi.org/10.1016/j.vaccine.2008.07.029
  56. The European Public Assessment. CaniLeish: canine vaccine against Leishmania infantum adjuvanted [Internet]; The European Public Assessment; [cited 2022 Aug 29]. Available from: https://www.ema.europa.eu/en/documents/overview/canileishepar-summary-public_en.pdf
  57. Moreno J, Vouldoukis I, Martin V, McGahie D, Cuisinier AM, Gueguen S. Use of a LIESP/QA-21 vaccine (CaniLeish) stimulates an appropriate Th1-dominated cell-mediated immune response in dogs. PLoS Negl Trop Dis 2012: 6: e1683. https://doi.org/10.1371/journal.pntd.0001683
  58. Parody N, Soto M, Requena JM, Alonso C. Adjuvant guided polarization of the immune humoral response against a protective multicomponent antigenic protein (Q) from Leishmania infantum. A CpG+Q mix protects Balb/c mice from infection. Parasite Immunol 2004; 26: 283-293. https://doi.org/10.1111/j.0141-9838.2004.00711.x
  59. Ahmed SB, Bahloul C, Robbana C, Askri S, Dellagi K. A comparative evaluation of different DNA vaccine candidates against experimental murine leishmaniasis due to L. major. Vaccine 2004; 22: 1631-1639. https://doi.org/10.1016/j.vaccine.2003.10.046
  60. Olobo JO, Anjili CO, Gicheru MM, Mbati PA, Kariuki TM, Githure JI, Koech DK, McMaster WR. Vaccination of vervet monkeys against cutaneous leishmaniosis using recombinant Leishmania 'major surface glycoprotein' (gp63). Vet Parasitol 1995; 60: 199-212. https://doi.org/10.1016/0304-4017(95)00788-6
  61. Gurunathan S, Sacks DL, Brown DR, Reiner SL, Charest H, Glaichenhaus N, Seder RA. Vaccination with DNA encoding the immunodominant LACK parasite antigen confers protective immunity to mice infected with Leishmania major. J Exp Med 1997; 186: 1137-1147. https://doi.org/10.1084/jem.186.7.1137
  62. Yang DM, Fairweather N, Button LL, McMaster WR, Kahl LP, Liew FY. Oral Salmonella typhimurium (AroA-) vaccine expressing a major Leishmanial surface protein (gp63) preferentially induces T helper 1 cells and protective immunity against leishmaniasis. J Immunol 1990; 145: 2281-2285. https://doi.org/10.4049/jimmunol.145.7.2281
  63. McMahon-Pratt D, Rodriguez D, Rodriguez JR, Zhang Y, Manson K, Bergman C, Rivas L, Rodriguez JF, Lohman KL, Ruddle NH. Recombinant vaccinia viruses expressing GP46/M-2 protect against Leishmania infection. Infect Immun 1993; 61: 3351-3359. https://doi.org/10.1128/iai.61.8.3351-3359.1993
  64. Champsi J, McMahon-Pratt D. Membrane glycoprotein M-2 protects against Leishmania amazonensis infection. Infect Immun 1988; 56: 3272-3279. https://doi.org/10.1128/iai.56.12.3272-3279.1988
  65. Handman E, Symons FM, Baldwin TM, Curtis JM, Scheerlinck JP. Protective vaccination with promastigote surface antigen 2 from Leishmania major is mediated by a TH1 type of immune response. Infect Immun 1995; 63: 4261-4267. https://doi.org/10.1128/iai.63.11.4261-4267.1995
  66. Santos WR, Aguiar IA, de Souza EP, de Lima VM, Palatnik M, Palatnik-de-Sousa CB. Immunotherapy against murine experimental visceral leishmaniasis with the FML-vaccine. Vaccine 2003; 21: 4668-4676. https://doi.org/10.1016/S0264-410X(03)00527-9
  67. Nagill R, Kaur S. Vaccine candidates for leishmaniasis: a review. Int Immunopharmacol 2011; 11: 1464-1488. https://doi.org/10.1016/j.intimp.2011.05.008
  68. Coler RN, Duthie MS, Hofmeyer KA, Guderian J, Jayashankar L, Vergara J, Rolf T, Misquith A, Laurance JD, Raman VS, Bailor HR, Cauwelaert ND, Reed SJ, Vallur A, Favila M, Orr MT, Ashman J, Ghosh P, Mondal D, Reed SG. From mouse to man: safety, immunogenicity and efficacy of a candidate leishmaniasis vaccine LEISH-F3+GLA-SE. Clin Transl Immunology 2015; 4: e35. https://doi.org/10.1038/cti.2015.6
  69. Gillespie PM, Beaumier CM, Strych U, Hayward T, Hotez PJ, Bottazzi ME. Status of vaccine research and development of vaccines for leishmaniasis. Vaccine 2016; 34: 2992-2995. https://doi.org/10.1016/j.vaccine.2015.12.071
  70. Chakravarty J, Kumar S, Trivedi S, Rai VK, Singh A, Ashman JA, Laughlin EM, Coler RN, Kahn SJ, Beckmann AM, Cowgill KD, Reed SG, Sundar S, Piazza FM. A clinical trial to evaluate the safety and immunogenicity of the LEISH-F1+MPL-SE vaccine for use in the prevention of visceral leishmaniasis. Vaccine 2011; 29: 3531-3537. https://doi.org/10.1016/j.vaccine.2011.02.096
  71. Duthie MS, Raman VS, Piazza FM, Reed SG. The development and clinical evaluation of second-generation leishmaniasis vaccines. Vaccine 2012; 30: 134-141. https://doi.org/10.1016/j.vaccine.2011.11.005
  72. Gannavaram S, Dey R, Avishek K, Selvapandiyan A, Salotra P, Nakhasi HL. Biomarkers of safety and immune protection for genetically modified live attenuated leishmania vaccines against visceral leishmaniasis-discovery and implications. Front Immunol 2014; 5: 241. https://doi.org/10.3389/fimmu.2014.00241
  73. Papadopoulou B, Roy G, Breton M, Kundig C, Dumas C, Fillion I, Singh AK, Olivier M, Ouellette M. Reduced infectivity of a Leishmania donovani biopterin transporter genetic mutant and its use as an attenuated strain for vaccination. Infect Immun 2002; 70: 62-68. https://doi.org/10.1128/IAI.70.1.62-68.2002
  74. Silvestre R, Cordeiro-Da-Silva A, Santarem N, Vergnes B, Sereno D, Ouaissi A. SIR2-deficient Leishmania infantum induces a defined IFN-gamma/IL-10 pattern that correlates with protection. J Immunol 2007; 179: 3161-3170. https://doi.org/10.4049/jimmunol.179.5.3161
  75. Carrion J, Folgueira C, Soto M, Fresno M, Requena JM. Leishmania infantum HSP70-II null mutant as candidate vaccine against leishmaniasis: a preliminary evaluation. Parasit Vectors 2011; 4: 150. https://doi.org/10.1186/1756-3305-4-150
  76. Ghosh A, Labrecque S, Matlashewski G. Protection against Leishmania donovani infection by DNA vaccination: increased DNA vaccination efficiency through inhibiting the cellular p53 response. Vaccine 2001; 19: 3169-3178. https://doi.org/10.1016/S0264-410X(01)00023-8
  77. Dey R, Dagur PK, Selvapandiyan A, McCoy JP, Salotra P, Duncan R, Nakhasi HL. Live attenuated Leishmania donovani p27 gene knockout parasites are nonpathogenic and elicit longterm protective immunity in BALB/c mice. J Immunol 2013; 190: 2138-2149. https://doi.org/10.4049/jimmunol.1202801
  78. Walker PS, Scharton-Kersten T, Rowton ED, Hengge U, Bouloc A, Udey MC, Vogel JC. Genetic immunization with glycoprotein 63 cDNA results in a helper T cell type 1 immune response and protection in a murine model of leishmaniasis. Hum Gene Ther 1998; 9: 1899-1907. https://doi.org/10.1089/hum.1998.9.13-1899
  79. Mutiso JM, Macharia JC, Kiio MN, Ichagichu JM, Rikoi H, Gicheru MM. Development of Leishmania vaccines: predicting the future from past and present experience. J Biomed Res. 2013; 27: 85-102. https://doi.org/10.7555/JBR.27.20120064
  80. Aunguldee T, Gerdprasert O, Tangteerawatana P, Jariyapongskul A, Leelayoova S, Wongsatayanon BT. Immunogenicity and potential protection of DNA vaccine of Leishmania martiniquensis against Leishmania infection in mice. J Infect Dev Ctries 2021; 15: 1328-1338. https://doi.org/10.3855/jidc.14472
  81. Rafati S, Zahedifard F, Azari MK, Taslimi Y, Taheri T. Leishmania infantum: prime boost vaccination with C-terminal extension of cysteine proteinase type I displays both type 1 and 2 immune signatures in BALB/c mice. Exp Parasitol 2008; 118: 393-401. https://doi.org/10.1016/j.exppara.2007.10.004
  82. Prasanna P, Kumar P, Kumar S, Rajana VK, Kant V, Prasad SR, Mohan U, Ravichandiran V, Mandal D. Current status of nanoscale drug delivery and the future of nano-vaccine development for leishmaniasis-a review. Biomed Pharmacother 2021; 141: 111920. https://doi.org/10.1016/j.biopha.2021.111920
  83. Kaye P, University of York. A study to assess the safety, efficacy and immunogenicity of Leishmania vaccine ChAd63-KH in PKDL [Internet]; [cited 2022 Dec 8]. Available from: https://clinicaltrials.gov/ct2/show/NCT03969134
  84. Taheri T, Rafati S. Leishmaniasis: recombinant DNA vaccination and different approaches for vaccine development. Clin Invest 2013; 3: 1023-1044. https://doi.org/10.4155/CLI.13.99
  85. Volpedo G, Huston RH, Holcomb EA, Pacheco-Fernandez T, Gannavaram S, Bhattacharya P, Nakhasi HL, Satoskar AR. From infection to vaccination: reviewing the global burden, history of vaccine development, and recurring challenges in global leishmaniasis protection. Expert Rev Vaccines 2021; 20: 1431-1446. https://doi.org/10.1080/14760584.2021.1969231
  86. Cecilio P, Perez-Cabezas B, Fernandez L, Moreno J, Carrillo E, Requena JM, Fichera E, Reed SG, Coler RN, Kamhawi S, Oliveira F, Valenzuela JG, Gradoni L, Glueck R, Gupta G, Cordeiroda-Silva A. Pre-clinical antigenicity studies of an innovative multivalent vaccine for human visceral leishmaniasis. PLoS Negl Trop Dis 2017; 11: e0005951. https://doi.org/10.1371/journal.pntd.0005951
  87. Osman M, Mistry A, Keding A, Gabe R, Cook E, Forrester S, Wiggins R, Di Marco S, Colloca S, Siani L, Cortese R, Smith DF, Aebischer T, Kaye PM, Lacey CJ. A third generation vaccine for human visceral leishmaniasis and post kala azar dermal leishmaniasis: first-in-human trial of ChAd63-KH. PLoS Negl Trop Dis 2017; 11: e0005527. https://doi.org/10.1371/journal.pntd.0005527
  88. Pati R, Shevtsov M, Sonawane A. Nanoparticle vaccines against infectious diseases. Front Immunol 2018; 9: 2224. https://doi.org/10.3389/fimmu.2018.02224
  89. Margaroni M, Agallou M, Athanasiou E, Kammona O, Kiparissides C, Gaitanaki C, Karagouni E. Vaccination with poly(D,L-lactide-co-glycolide) nanoparticles loaded with soluble Leishmania antigens and modified with a TNFα-mimicking peptide or monophosphoryl lipid A confers protection against experimental visceral leishmaniasis. Int J Nanomedicine 2017; 12: 6169-6184. https://doi.org/10.2147/IJN.S141069
  90. Taslimi Y, Zahedifard F, Taheri T, Doroud D, Dizaji SL, Saljoughian N, Rafati S. Comparison of protective potency of DNA and live vaccines expressing A2-CPA-CPB-CTE antigens against visceral leishmaniasis in Syrian hamster as preliminary study. Iran J Parasitol 2020; 15: 383-392. https://doi.org/10.18502/ijpa.v15i3.4203
  91. Lage DP, Ribeiro PA, Dias DS, Mendonca DV, Ramos FF, Carvalho LM, de Oliveira D, Steiner BT, Martins VT, Perin L, Machado AS, Santos TTO, Tavares GSV, Oliveira-da-Silva JA, Oliveira JS, Roatt BM, Machado-de-Avila RA, Teixeira AL, Humbert MV, Coelho EAF, Christodoulides M. A candidate vaccine for human visceral leishmaniasis based on a specific T cell epitopecontaining chimeric protein protects mice Against Leishmania infantum infection. NPJ Vaccines 2020; 5: 75. https://doi.org/10.1038/s41541-020-00224-0
  92. Alves-Silva MV, Nico D, de Luca PM, Palatnik de-Sousa CB. The F1F3 recombinant chimera of Leishmania donovani-Nucleoside Hydrolase (NH36) and its epitopes induce cross-protection against Leishmania (V.) braziliensis infection in mice. Front Immunol 2019; 10: 724. https://doi.org/10.3389/fimmu.2019.00724
  93. Klatt S, Simpson L, Maslov DA, Konthur Z. Leishmania tarentolae: taxonomic classification and its application as a promising biotechnological expression host. PLoS Negl Trop Dis 2019; 13: e0007424. https://doi.org/10.1371/journal.pntd.0007424
  94. Mendoza-Roldan JA, Latrofa MS, Iatta R, RS Manoj R, Panarese R, Annoscia G, Pombi M, Zatelli A, Beugnet F, Otranto D. Detection of Leishmania tarentolae in lizards, sand flies and dogs in southern Italy, where Leishmania infantum is endemic: hindrances and opportunities. Parasit Vectors 2021; 14: 461. https://doi.org/10.1186/s13071-021-04973-2
  95. Breton M, Tremblay MJ, Ouellette M, Papadopoulou B. Live nonpathogenic parasitic vector as a candidate vaccine against visceral leishmaniasis. Infect Immun 2005; 73: 6372-6382. https://doi.org/10.1128/IAI.73.10.6372-6382.2005
  96. Panasiuk M, Zimmer K, Czarnota A, Grzyb K, Narajczyk M, Peszynska-Sularz G, Zoledowska S, Nidzworski D, Hovhannisyan L, Gromadzka B. Immunization with Leishmania tarentolae-derived norovirus virus-like particles elicits high humoral response and stimulates the production of neutralizing antibodies. Microbial Cell Factories 2021; 20: 186. https://doi.org/10.1186/s12934-021-01677-1
  97. Moura AP, Santos LC, Brito CR, Valencia E, Junqueira C, Filho AA, Sant'Anna MR, Gontijo NF, Bartholomeu DC, Fujiwara RT, Gazzinelli RT, McKay CS, Sanhueza CA, Finn MG, Marques AF. Virus-like particle display of the α-Gal carbohydrate for vaccination against Leishmania infection. ACS central science 2017; 3: 1026-1031. https://doi.org/10.1021/acscentsci.7b00311
  98. De Beuckelaer A, Grooten J, De Koker S. Type I interferons modulate CD8+ T cell immunity to mRNA vaccines. Trends Mol Med 2017; 23: 216-226. https://doi.org/10.1016/j.molmed.2017.01.006
  99. Versteeg L, Almutairi MM, Hotez PJ, Pollet J. Enlisting the mRNA vaccine platform to combat parasitic infections. Vaccines 2019; 7: 122. https://doi.org/10.3390/vaccines7040122
  100. Duthie MS, Van Hoeven N, MacMillen Z, Picone A, Mohamath R, Erasmus J, Hsu FC, Stinchcomb DT, Reed SG. Heterologous immunization with defined RNA and subunit vaccines enhances T Cell responses that protect against Leishmania donovani. Front Immunol 2018; 9: 2420. https://doi.org/10.3389/fimmu.2018.02420
  101. Duthie MS, Machado BA, Badaro R, Kaye PM, Reed SG. Leishmaniasis vaccines: applications of RNA technology and targeted clinical trial designs. Pathogens 2022; 11: 1259. https://doi.org/10.3390/pathogens11111259