DOI QR코드

DOI QR Code

A study on analytical methods for polycyclic aromatic hydrocarbons in foods

식품 중 다환방향족탄화수소 분석법 연구

  • Kim, Yong-Yeon (Department of Food Science and Biotechnology, Dongguk University-Seoul) ;
  • Shin, Han-Seung (Department of Food Science and Biotechnology, Dongguk University-Seoul)
  • 김용연 (동국대학교 식품생명공학과) ;
  • 신한승 (동국대학교 식품생명공학과)
  • Received : 2022.01.17
  • Accepted : 2022.02.17
  • Published : 2022.03.30

Abstract

This study was proceeded the analytical methods using various analytical instruments for polycyclic aromatic hydrocarbons (PAHs) in food products. Various analytical methods were developed to determine levels of PAHs including benzo[a]pyrene, benzo[a]anthracene, benzo[b]fluoranthene, and chrysene formed in various food products using gas chromatography-mass spectrometry (GC-MS), enzyme-linked immunosorbent assay (ELISA) and raman spectroscopy. Recently, the rapid on-site response for the detection of hazardous substances in food aims to develop an onsite rapid detection of a simplified technical analysis method to reduce the time and cost required for analysis of PAHs. Current PAHs detection methods have been reviewed along with new raman spectroscopy analytical method.

Keywords

References

  1. Guillen MD, Sopelana P, Partearroyo MA. Food as a source of polycyclic aromatic carcinogens. Rev. Environ. 12(3): 133-146 (1997)
  2. Lapviboonsuk J, Loganathan B. Polynuclear aromatic hydrocarbons in sediments and mussel tissue from the lower tennessee river and kentucky lake. J. Ky. Acad. Sci. 68(2): 186-197 (2007)
  3. Baan RA, Steenwinkel MJST, Berg PTM, Roggeband R, Delft JHM. Molecular dosimetry of DNA damage induced by polycyclic aromatic hydrocarbons; relevance for exposure monitoring and risk assessment. Hum. Exp. Toxicol. 13(12): 880-887 (1994) https://doi.org/10.1177/096032719401301211
  4. Sandhu MS, White IR, McPherson K. Systematic review of the prospective cohort studies on meat consumption and colorectal cancer risk : A meta-analytical approach. Cancer Epidemiol. Biomarkers Prev. 10(5): 439-446 (2001)
  5. Sinha R, Peters U, Cross AJ, Kulldorff M, Weissfeld JL, Pinsky PF, Rothman N, Hayes RB, Prostate, lung, colorectal, ovarian cancer project team. Meat, meat cooking methods and preservation, and risk for colorectal adenoma. Cancer Research. 65(17): 8034-8041 (2005) https://doi.org/10.1158/0008-5472.CAN-04-3429
  6. Kang BM, Lee BM, Shin HS. Determination of polycyclic aromatic hydrocarbon (PAH) content and risk assessment from edible oils in korea. J Toxicology Environ Health. A. 77(22-24): 1359-1371 (2014) https://doi.org/10.1080/15287394.2014.951593
  7. Lee JW, Jeong JH, Park SW, Lee KG. Monitoring and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in processed foods and their raw materials. Food control. 92: 286-292 (2018) https://doi.org/10.1016/j.foodcont.2018.05.012
  8. Lee YN, Lee SH, Kim JS, Patra JK, Shin HS. Chemical analysis techniques and investigation of polycyclic aromatic hydrocarbons in fruit, vegetables and meats and their products. Food. Chem. 277: 156-161 (2019) https://doi.org/10.1016/j.foodchem.2018.10.114
  9. Kim YY, Patra JK, Shin HS. Evaluation of analytical method and risk assessment of polycyclic aromatic hydrocarbons for fishery products in Korea. Food control. 131: 108421-108427 (2022) https://doi.org/10.1016/j.foodcont.2021.108421
  10. Zielinski TL, Smith SA, Pestka JJ, Gray JI, Smith DM. ELISA to quantify hexanal-protein adducts in a meat model system. J. Agric. Food. Chem. 49: 3017-3023 (2001) https://doi.org/10.1021/jf001151o
  11. Goodridge CF, Beaudry RM, Pestka JJ, Smith DM. ELISA for monitoring lipid oxidation in chicken myofibrils through quantification of hexanal-protein adducts. J. Agric. Food. Chem. 51: 7533-7539 (2003) https://doi.org/10.1021/jf034553f
  12. Fan Z, Li Z, Liu S, Yang F, Bian Z, Wang Y, Tang G, Zhao Q, Deng H, Liu S. Rapid fluorescence immunoassay of benzo[a]pyrene in mainstream cigarette smoke based on a dual-functional antibody-DNA conjugate. RSC Adv. 8: 29562-29569 (2018) https://doi.org/10.1039/c8ra04915g
  13. Asher SA. Ultraviolet resonance raman spectrometry for detection and speciation of trace polycyclic aromatic hydrocarbons. Anal. Chem. 56(4): 720-724 (1984) https://doi.org/10.1021/ac00268a029
  14. Bao L, Sheng PT, Li J, Wu SY, Cai QY, Yao SZ. Surface enhanced raman spectroscopic detection of polycyclic aromatic hydrocarbons (PAHs) using a gold nanoparticles-modified alginate gel network. Analyst. 137(17): 4010-4015 (2012) https://doi.org/10.1039/c2an35589b
  15. Fesenko O, Dovbeshko G, Dementjev A, Karpicz R, Kaplas T, Svirko Y. Graphene-enhanced raman spectroscopy of thymine adsorbed on single-layer graphene. Nanoscale. Res. Lett. 10(1): 163-169 (2015) https://doi.org/10.1186/s11671-015-0869-4
  16. Fu S, Guo X, Wang H, Yang T, Wen Y, Yang H. Functionalized Au nanoparticles for label-free raman determination of ppb level benzopyrene in edible oil. Sensor. Actuators. B: Chem. 212: 200-206 (2015) https://doi.org/10.1016/j.snb.2015.01.134
  17. Lanoul A, Coleman T, Asher SA. UV resonance raman spectroscopic detection of nitrate and nitrite in wastewater treatment processes. Anal. Chem. 74(6): 1458-1461 (2002) https://doi.org/10.1021/ac010863q
  18. Kim H, Kosuda KM, Van Duyne RP, Stair PC. Resonance raman and surface- and tip-enhanced raman spectroscopy methods to study solid catalysts and heterogeneous catalytic reactions. Chem. Soc. Rev. 39: 4820-4844 (2010) https://doi.org/10.1039/c0cs00044b
  19. Kolomijeca A, Kronfeldt HD, Kwon YH. A portable surface enhanced raman spectroscopy (SERS) sensor system applied for seawater and sediment investigations on an arctic sea-trial. International. J. Offshore. Polar. Eng. 23: 161-165 (2013)
  20. Lin WH, Lu YH, Hsu YJ. Au nanoplates as robust, recyclable SERS substrates for ultrasensitive chemical sensing. J. Colloid. Interface Sci. 418: 87-94 (2014) https://doi.org/10.1016/j.jcis.2013.11.082
  21. Djinovic J, Popovic A, Jira W. Polycyclic aromatic hydrocarbons (PAHs) in different types of smoked meat products from Serbia. Meat. Sci. 80(2): 449-456 (2008) https://doi.org/10.1016/j.meatsci.2008.01.008
  22. Dost K, Ideli C. Determination of polycyclic aromatic hydrocarbons in edible oils and barbecued food by HPLC/UV-Vis detection. Food. Chem. 133(1): 193-199 (2012) https://doi.org/10.1016/j.foodchem.2012.01.001
  23. Chung SY, Yettella RR, Kim JS, Kwon K, Kim MC, Min BD. Effects of grilling and roasting on the levels of polycyclic aromatic hydrocarbons in beef and pork. Food. Chem. 129(4): 1420-1426 (2011) https://doi.org/10.1016/j.foodchem.2011.05.092
  24. Alomirah H, Al-Zenki S, Al-Hooti S, Zaghloul S, Sawaya W, Ahmed N, Kannan K. Concentrations and dietary exposure to polycyclic aromatic hydrocarbons (PAHs) from grilled and smoked foods. Food Control. 22(12): 2028-2035 (2011) https://doi.org/10.1016/j.foodcont.2011.05.024
  25. Ciecierska M, Obiedzinski MW. Polycyclic aromatic hydrocarbons in the bakery chain. Food. Chem. 141(1): 1-9 (2013) https://doi.org/10.1016/j.foodchem.2013.03.006
  26. Kim YH, Yoon EK, Lee HM, Park KA, Jun EA, Lee CH, Choi SY, Lim ST, Ze KR, Choi KS. Exposure assessment for polycyclic aromatic hydrocarbons in the model menu system of Korean. J. Food. Hyg. Safety. 19(4): 176-184 (2004)
  27. Kim IS, Ahn MS, Jang DK. A study on the occurrence of benzo[a] pyrene in fats and oils by heat treatment (I). Korean. J. Soc. Food Sci. 9(4): 323-328 (1993)
  28. Toth L, Blaas W. The effect of smoking technology on the content of carcinogenic hydrocarbons in smoked meat products. Fleischwirtschaft. 52: 1419-1422 (1972)
  29. Wretling S, Eriksson A, Eskhult GA, Larsson B. Polycyclic aromatic hydrocarbons (PAHs) in swedish smoked meat and fish. J. Food. Compost. Anal. 23(3): 264-272 (2010) https://doi.org/10.1016/j.jfca.2009.10.003
  30. Seo I, Nam H, Shin HS. Influence of polycyclic aromatic hydrocarbons formation in sesame oils with different roasting conditions. Korean. J. Food. Sci. Technol. 41(4): 355-361 (2009)
  31. Oh SS. Outbreak mechanism and properties of novel harmful substances. Research Report of Youlchol Foundation. (2011)
  32. Shin BR, Yang SO, Kim YS. Trends in the reduction of benzo[a] pyrene in sesame oils. Food Ind. Nutr. 19(1): 5-12 (2014)
  33. Lee KH. Analysis of benzopyrene in foods. Guideline of Korea Food and Drug Safety Administration. (2008)
  34. Cho HK, Kim M, Park SK, Shin HS. Analysis of benzo[a]pyrene content and risk assessment. Korean J. Food Sci. Animal. Resour. 31(6): 960-965 (2011) https://doi.org/10.5851/kosfa.2011.31.6.960
  35. Shin HS. Improvement of analytical method for benzo[a]pyrene in foods and study on monitoring and exposure. Contaminated chemical division of Korea Food and Drug Safety Administration. (2010)
  36. Lund M, Duedahl OL, Christensen JH. Extraction of polycyclic aromatic hydrocarbons from smoked fish using pressurized liquid extraction with integrated fat removal. Talanta. 79(1): 10-15 (2009) https://doi.org/10.1016/j.talanta.2009.02.048
  37. Alexander J, Benford D, Cockburn A, Cravedi JP, Dogliotti E, Domenico AD, Fernandezcruz ML, Gremmels JF, Furst P, Galli C, Gzyl PGJ, Heinemeyer G, Johansson N, Mutti A, Schlatter J, Leeuwen RV, Peteghem CV, Verger P. Polycyclic aromatic hydrocarbons in food : Scientific opinion of the panel on contaminants in the food chain. The EFSA Journal. 724: 1-114 (2008)
  38. Knopp D. Immunoassay development for environmental analysis. Anal. Bioanal. Chem. 385(3): 425-427 (2006) https://doi.org/10.1007/s00216-006-0465-7
  39. Schneider RJ. Environmental immunoassays. Anal. Bioanal. Chem. 375(1): 44-46 (2003) https://doi.org/10.1007/s00216-002-1659-2
  40. Fahnrich KA, Pravda M, Guilbault GG. Immunochemical detection of polycyclic aromatic hydrocarbons (PAHs). Anal. Lett. 35(8): 1269-1300 (2002) https://doi.org/10.1081/AL-120006666
  41. Emon JMV, Gerlach CL. A status report on field-portable immunoassay. Environ. Sci. Technol. 29(7): 312A-317A (1995) https://doi.org/10.1021/es00007a001
  42. Kramer PM. A strategy to validate immunoassay test kits for TNT and PAHs as a field screening method for contaminated sites in Germany. Anal. Chim. Acta. 376(1): 3-11 (1998) https://doi.org/10.1016/S0003-2670(98)00446-2
  43. Goryacheva IY, Eremin SA, Shutaleva EA, Suchanek M, Niessner R, Knopp D. Development of a fluorescence polarization immunoassay for polycyclic aromatic hydrocarbons. Anal. Lett. 40(7): 1445-1460 (2007) https://doi.org/10.1080/00032710701297034
  44. Wei MY, Wen SD, Yang XQ, Guo LH. Development of redox-labeled electrochemical immunoassay for polycyclic aromatic hydrocarbons with controlled surface modification and catalytic voltammetric detection. Biosens. Bioelectron. 24(9): 2909-2914 (2009) https://doi.org/10.1016/j.bios.2009.02.031
  45. Yang P, Zheng QL, Xu H, Liu JS, Jin LT. A highly sensitive electrochemical impedance spectroscopy immunosensor for determination of 1-pyrenebutyric acid based on the bifunctionality of Nafion/Gold nanoparticles composite electrode. Chin. J. Chem. 30(5): 1155-1162 (2012) https://doi.org/10.1002/cjoc.201100485
  46. Kupstat A, Knopp D, Niessner R, Kumke MU. Novel intramolecular energy transfer probe for the detection of benzo(a)pyrene metabolites in a homogeneous competitive fluorescence immunoassay. J. Phys. Chem. B. 114(4): 1666-1673 (2010) https://doi.org/10.1021/jp906014j
  47. Matschulat D, Deng A, Niessner R, Knopp D. Development of a highly sensitive monoclonal antibody based ELISA for detection of benzo[a]pyrene in potable water. Analyst. 130(7): 1078-1086 (2005) https://doi.org/10.1039/b503636d
  48. Scharnweber T, Fisher M, Suchanek M, Knopp D, Niessner R. Monoclonal antibody to polycyclic aromatic hydrocarbons based on a new benzo[a]pyrene immunogen. J. Anal. Chem. 371(5): 578-585 (2001)
  49. Shi X, Zhang D, Yan WJX, Yang J, Wang C, Ma J. Portable surface-enhanced raman scattering sensor for the rapid detection of polycyclic aromatic hydrocarbons in coastal seawater. Mar. Technol. Soc. J. 53(2): 46-55 (2019)
  50. Pfannkuche J, Lubecki L, Schmidt H, Kowalewska G, Kronfeldt HD. The use of surface-enhanced raman scattering (SERS) for detection of PAHs in the gulf of gdansk (Baltic Sea). Mar. Pollut. Bull. 64(3): 614-626 (2012) https://doi.org/10.1016/j.marpolbul.2011.12.008
  51. Colas F, Crassous MP, Laurent S, Litaker RW, Rinnert E, Gall EL, Compere C. A surface plasmon resonance system for the underwater detection of domoic acid. Limnol. Oceanogr. Methods. 14(7): 456-465 (2016) https://doi.org/10.1002/lom3.10104
  52. Cheng J, Zhang S, Wang S, Wang P, Wang XO, Su, Xie J. Rapid and sensitive detection of acrylamide in fried food using dispersive solid-phase extraction combined with surface-enhanced raman spectroscopy. Food. Chem. 276: 157-163 (2019) https://doi.org/10.1016/j.foodchem.2018.10.004
  53. Vivo TG, Schoenmakers PJ. Automatic selection of optimal Savitzky-Golay smoothing. Anal. Chem. 78(13): 4598-4608 (2006) https://doi.org/10.1021/ac0600196
  54. Xu W, Xiao J, Chen Y, Chen Y, Ling X, Zhang J. Graphene-veiled gold substrate for surface-enhanced raman spectroscopy. Adv. Mater. 25(6): 928-933 (2013) https://doi.org/10.1002/adma.201204355
  55. Zhang CY, Hao B, Zhao B, Fu Y, Zhang H, Moeendarbari S, Pickering CS, Hao YW, Liu YQ. Graphene oxide-wrapped flower-like silver particles for surface-enhanced raman spectroscopy and their applications in polychlorinated biphenyls detection. Appl. Surf. Sci. 400: 49-56 (2017) https://doi.org/10.1016/j.apsusc.2016.12.161