References
- Guillen MD, Sopelana P, Partearroyo MA. Food as a source of polycyclic aromatic carcinogens. Rev. Environ. 12(3): 133-146 (1997)
- Lapviboonsuk J, Loganathan B. Polynuclear aromatic hydrocarbons in sediments and mussel tissue from the lower tennessee river and kentucky lake. J. Ky. Acad. Sci. 68(2): 186-197 (2007)
- Baan RA, Steenwinkel MJST, Berg PTM, Roggeband R, Delft JHM. Molecular dosimetry of DNA damage induced by polycyclic aromatic hydrocarbons; relevance for exposure monitoring and risk assessment. Hum. Exp. Toxicol. 13(12): 880-887 (1994) https://doi.org/10.1177/096032719401301211
- Sandhu MS, White IR, McPherson K. Systematic review of the prospective cohort studies on meat consumption and colorectal cancer risk : A meta-analytical approach. Cancer Epidemiol. Biomarkers Prev. 10(5): 439-446 (2001)
- Sinha R, Peters U, Cross AJ, Kulldorff M, Weissfeld JL, Pinsky PF, Rothman N, Hayes RB, Prostate, lung, colorectal, ovarian cancer project team. Meat, meat cooking methods and preservation, and risk for colorectal adenoma. Cancer Research. 65(17): 8034-8041 (2005) https://doi.org/10.1158/0008-5472.CAN-04-3429
- Kang BM, Lee BM, Shin HS. Determination of polycyclic aromatic hydrocarbon (PAH) content and risk assessment from edible oils in korea. J Toxicology Environ Health. A. 77(22-24): 1359-1371 (2014) https://doi.org/10.1080/15287394.2014.951593
- Lee JW, Jeong JH, Park SW, Lee KG. Monitoring and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in processed foods and their raw materials. Food control. 92: 286-292 (2018) https://doi.org/10.1016/j.foodcont.2018.05.012
- Lee YN, Lee SH, Kim JS, Patra JK, Shin HS. Chemical analysis techniques and investigation of polycyclic aromatic hydrocarbons in fruit, vegetables and meats and their products. Food. Chem. 277: 156-161 (2019) https://doi.org/10.1016/j.foodchem.2018.10.114
- Kim YY, Patra JK, Shin HS. Evaluation of analytical method and risk assessment of polycyclic aromatic hydrocarbons for fishery products in Korea. Food control. 131: 108421-108427 (2022) https://doi.org/10.1016/j.foodcont.2021.108421
- Zielinski TL, Smith SA, Pestka JJ, Gray JI, Smith DM. ELISA to quantify hexanal-protein adducts in a meat model system. J. Agric. Food. Chem. 49: 3017-3023 (2001) https://doi.org/10.1021/jf001151o
- Goodridge CF, Beaudry RM, Pestka JJ, Smith DM. ELISA for monitoring lipid oxidation in chicken myofibrils through quantification of hexanal-protein adducts. J. Agric. Food. Chem. 51: 7533-7539 (2003) https://doi.org/10.1021/jf034553f
- Fan Z, Li Z, Liu S, Yang F, Bian Z, Wang Y, Tang G, Zhao Q, Deng H, Liu S. Rapid fluorescence immunoassay of benzo[a]pyrene in mainstream cigarette smoke based on a dual-functional antibody-DNA conjugate. RSC Adv. 8: 29562-29569 (2018) https://doi.org/10.1039/c8ra04915g
- Asher SA. Ultraviolet resonance raman spectrometry for detection and speciation of trace polycyclic aromatic hydrocarbons. Anal. Chem. 56(4): 720-724 (1984) https://doi.org/10.1021/ac00268a029
- Bao L, Sheng PT, Li J, Wu SY, Cai QY, Yao SZ. Surface enhanced raman spectroscopic detection of polycyclic aromatic hydrocarbons (PAHs) using a gold nanoparticles-modified alginate gel network. Analyst. 137(17): 4010-4015 (2012) https://doi.org/10.1039/c2an35589b
- Fesenko O, Dovbeshko G, Dementjev A, Karpicz R, Kaplas T, Svirko Y. Graphene-enhanced raman spectroscopy of thymine adsorbed on single-layer graphene. Nanoscale. Res. Lett. 10(1): 163-169 (2015) https://doi.org/10.1186/s11671-015-0869-4
- Fu S, Guo X, Wang H, Yang T, Wen Y, Yang H. Functionalized Au nanoparticles for label-free raman determination of ppb level benzopyrene in edible oil. Sensor. Actuators. B: Chem. 212: 200-206 (2015) https://doi.org/10.1016/j.snb.2015.01.134
- Lanoul A, Coleman T, Asher SA. UV resonance raman spectroscopic detection of nitrate and nitrite in wastewater treatment processes. Anal. Chem. 74(6): 1458-1461 (2002) https://doi.org/10.1021/ac010863q
- Kim H, Kosuda KM, Van Duyne RP, Stair PC. Resonance raman and surface- and tip-enhanced raman spectroscopy methods to study solid catalysts and heterogeneous catalytic reactions. Chem. Soc. Rev. 39: 4820-4844 (2010) https://doi.org/10.1039/c0cs00044b
- Kolomijeca A, Kronfeldt HD, Kwon YH. A portable surface enhanced raman spectroscopy (SERS) sensor system applied for seawater and sediment investigations on an arctic sea-trial. International. J. Offshore. Polar. Eng. 23: 161-165 (2013)
- Lin WH, Lu YH, Hsu YJ. Au nanoplates as robust, recyclable SERS substrates for ultrasensitive chemical sensing. J. Colloid. Interface Sci. 418: 87-94 (2014) https://doi.org/10.1016/j.jcis.2013.11.082
- Djinovic J, Popovic A, Jira W. Polycyclic aromatic hydrocarbons (PAHs) in different types of smoked meat products from Serbia. Meat. Sci. 80(2): 449-456 (2008) https://doi.org/10.1016/j.meatsci.2008.01.008
- Dost K, Ideli C. Determination of polycyclic aromatic hydrocarbons in edible oils and barbecued food by HPLC/UV-Vis detection. Food. Chem. 133(1): 193-199 (2012) https://doi.org/10.1016/j.foodchem.2012.01.001
- Chung SY, Yettella RR, Kim JS, Kwon K, Kim MC, Min BD. Effects of grilling and roasting on the levels of polycyclic aromatic hydrocarbons in beef and pork. Food. Chem. 129(4): 1420-1426 (2011) https://doi.org/10.1016/j.foodchem.2011.05.092
- Alomirah H, Al-Zenki S, Al-Hooti S, Zaghloul S, Sawaya W, Ahmed N, Kannan K. Concentrations and dietary exposure to polycyclic aromatic hydrocarbons (PAHs) from grilled and smoked foods. Food Control. 22(12): 2028-2035 (2011) https://doi.org/10.1016/j.foodcont.2011.05.024
- Ciecierska M, Obiedzinski MW. Polycyclic aromatic hydrocarbons in the bakery chain. Food. Chem. 141(1): 1-9 (2013) https://doi.org/10.1016/j.foodchem.2013.03.006
- Kim YH, Yoon EK, Lee HM, Park KA, Jun EA, Lee CH, Choi SY, Lim ST, Ze KR, Choi KS. Exposure assessment for polycyclic aromatic hydrocarbons in the model menu system of Korean. J. Food. Hyg. Safety. 19(4): 176-184 (2004)
- Kim IS, Ahn MS, Jang DK. A study on the occurrence of benzo[a] pyrene in fats and oils by heat treatment (I). Korean. J. Soc. Food Sci. 9(4): 323-328 (1993)
- Toth L, Blaas W. The effect of smoking technology on the content of carcinogenic hydrocarbons in smoked meat products. Fleischwirtschaft. 52: 1419-1422 (1972)
- Wretling S, Eriksson A, Eskhult GA, Larsson B. Polycyclic aromatic hydrocarbons (PAHs) in swedish smoked meat and fish. J. Food. Compost. Anal. 23(3): 264-272 (2010) https://doi.org/10.1016/j.jfca.2009.10.003
- Seo I, Nam H, Shin HS. Influence of polycyclic aromatic hydrocarbons formation in sesame oils with different roasting conditions. Korean. J. Food. Sci. Technol. 41(4): 355-361 (2009)
- Oh SS. Outbreak mechanism and properties of novel harmful substances. Research Report of Youlchol Foundation. (2011)
- Shin BR, Yang SO, Kim YS. Trends in the reduction of benzo[a] pyrene in sesame oils. Food Ind. Nutr. 19(1): 5-12 (2014)
- Lee KH. Analysis of benzopyrene in foods. Guideline of Korea Food and Drug Safety Administration. (2008)
- Cho HK, Kim M, Park SK, Shin HS. Analysis of benzo[a]pyrene content and risk assessment. Korean J. Food Sci. Animal. Resour. 31(6): 960-965 (2011) https://doi.org/10.5851/kosfa.2011.31.6.960
- Shin HS. Improvement of analytical method for benzo[a]pyrene in foods and study on monitoring and exposure. Contaminated chemical division of Korea Food and Drug Safety Administration. (2010)
- Lund M, Duedahl OL, Christensen JH. Extraction of polycyclic aromatic hydrocarbons from smoked fish using pressurized liquid extraction with integrated fat removal. Talanta. 79(1): 10-15 (2009) https://doi.org/10.1016/j.talanta.2009.02.048
- Alexander J, Benford D, Cockburn A, Cravedi JP, Dogliotti E, Domenico AD, Fernandezcruz ML, Gremmels JF, Furst P, Galli C, Gzyl PGJ, Heinemeyer G, Johansson N, Mutti A, Schlatter J, Leeuwen RV, Peteghem CV, Verger P. Polycyclic aromatic hydrocarbons in food : Scientific opinion of the panel on contaminants in the food chain. The EFSA Journal. 724: 1-114 (2008)
- Knopp D. Immunoassay development for environmental analysis. Anal. Bioanal. Chem. 385(3): 425-427 (2006) https://doi.org/10.1007/s00216-006-0465-7
- Schneider RJ. Environmental immunoassays. Anal. Bioanal. Chem. 375(1): 44-46 (2003) https://doi.org/10.1007/s00216-002-1659-2
- Fahnrich KA, Pravda M, Guilbault GG. Immunochemical detection of polycyclic aromatic hydrocarbons (PAHs). Anal. Lett. 35(8): 1269-1300 (2002) https://doi.org/10.1081/AL-120006666
- Emon JMV, Gerlach CL. A status report on field-portable immunoassay. Environ. Sci. Technol. 29(7): 312A-317A (1995) https://doi.org/10.1021/es00007a001
- Kramer PM. A strategy to validate immunoassay test kits for TNT and PAHs as a field screening method for contaminated sites in Germany. Anal. Chim. Acta. 376(1): 3-11 (1998) https://doi.org/10.1016/S0003-2670(98)00446-2
- Goryacheva IY, Eremin SA, Shutaleva EA, Suchanek M, Niessner R, Knopp D. Development of a fluorescence polarization immunoassay for polycyclic aromatic hydrocarbons. Anal. Lett. 40(7): 1445-1460 (2007) https://doi.org/10.1080/00032710701297034
- Wei MY, Wen SD, Yang XQ, Guo LH. Development of redox-labeled electrochemical immunoassay for polycyclic aromatic hydrocarbons with controlled surface modification and catalytic voltammetric detection. Biosens. Bioelectron. 24(9): 2909-2914 (2009) https://doi.org/10.1016/j.bios.2009.02.031
- Yang P, Zheng QL, Xu H, Liu JS, Jin LT. A highly sensitive electrochemical impedance spectroscopy immunosensor for determination of 1-pyrenebutyric acid based on the bifunctionality of Nafion/Gold nanoparticles composite electrode. Chin. J. Chem. 30(5): 1155-1162 (2012) https://doi.org/10.1002/cjoc.201100485
- Kupstat A, Knopp D, Niessner R, Kumke MU. Novel intramolecular energy transfer probe for the detection of benzo(a)pyrene metabolites in a homogeneous competitive fluorescence immunoassay. J. Phys. Chem. B. 114(4): 1666-1673 (2010) https://doi.org/10.1021/jp906014j
- Matschulat D, Deng A, Niessner R, Knopp D. Development of a highly sensitive monoclonal antibody based ELISA for detection of benzo[a]pyrene in potable water. Analyst. 130(7): 1078-1086 (2005) https://doi.org/10.1039/b503636d
- Scharnweber T, Fisher M, Suchanek M, Knopp D, Niessner R. Monoclonal antibody to polycyclic aromatic hydrocarbons based on a new benzo[a]pyrene immunogen. J. Anal. Chem. 371(5): 578-585 (2001)
- Shi X, Zhang D, Yan WJX, Yang J, Wang C, Ma J. Portable surface-enhanced raman scattering sensor for the rapid detection of polycyclic aromatic hydrocarbons in coastal seawater. Mar. Technol. Soc. J. 53(2): 46-55 (2019)
- Pfannkuche J, Lubecki L, Schmidt H, Kowalewska G, Kronfeldt HD. The use of surface-enhanced raman scattering (SERS) for detection of PAHs in the gulf of gdansk (Baltic Sea). Mar. Pollut. Bull. 64(3): 614-626 (2012) https://doi.org/10.1016/j.marpolbul.2011.12.008
- Colas F, Crassous MP, Laurent S, Litaker RW, Rinnert E, Gall EL, Compere C. A surface plasmon resonance system for the underwater detection of domoic acid. Limnol. Oceanogr. Methods. 14(7): 456-465 (2016) https://doi.org/10.1002/lom3.10104
- Cheng J, Zhang S, Wang S, Wang P, Wang XO, Su, Xie J. Rapid and sensitive detection of acrylamide in fried food using dispersive solid-phase extraction combined with surface-enhanced raman spectroscopy. Food. Chem. 276: 157-163 (2019) https://doi.org/10.1016/j.foodchem.2018.10.004
- Vivo TG, Schoenmakers PJ. Automatic selection of optimal Savitzky-Golay smoothing. Anal. Chem. 78(13): 4598-4608 (2006) https://doi.org/10.1021/ac0600196
- Xu W, Xiao J, Chen Y, Chen Y, Ling X, Zhang J. Graphene-veiled gold substrate for surface-enhanced raman spectroscopy. Adv. Mater. 25(6): 928-933 (2013) https://doi.org/10.1002/adma.201204355
- Zhang CY, Hao B, Zhao B, Fu Y, Zhang H, Moeendarbari S, Pickering CS, Hao YW, Liu YQ. Graphene oxide-wrapped flower-like silver particles for surface-enhanced raman spectroscopy and their applications in polychlorinated biphenyls detection. Appl. Surf. Sci. 400: 49-56 (2017) https://doi.org/10.1016/j.apsusc.2016.12.161