• Title/Summary/Keyword: gas chromatography-mass spectrophotometry

Search Result 7, Processing Time 0.024 seconds

A study on analytical methods for polycyclic aromatic hydrocarbons in foods (식품 중 다환방향족탄화수소 분석법 연구)

  • Kim, Yong-Yeon;Shin, Han-Seung
    • Food Science and Industry
    • /
    • v.55 no.1
    • /
    • pp.45-57
    • /
    • 2022
  • This study was proceeded the analytical methods using various analytical instruments for polycyclic aromatic hydrocarbons (PAHs) in food products. Various analytical methods were developed to determine levels of PAHs including benzo[a]pyrene, benzo[a]anthracene, benzo[b]fluoranthene, and chrysene formed in various food products using gas chromatography-mass spectrometry (GC-MS), enzyme-linked immunosorbent assay (ELISA) and raman spectroscopy. Recently, the rapid on-site response for the detection of hazardous substances in food aims to develop an onsite rapid detection of a simplified technical analysis method to reduce the time and cost required for analysis of PAHs. Current PAHs detection methods have been reviewed along with new raman spectroscopy analytical method.

Studies on the Formatiion of N-Nitrosamine in the Salt-Fermented Damsel fish Chromis notatus (자리젓 중 N-Nitrosamine 생성에 관한 연구)

  • 김수현;강순배;이응호
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.19 no.1
    • /
    • pp.35.2-72
    • /
    • 1990
  • N-Nitrosamines have been known to be strong carcinogens and are formed by the reaction of nitrous acid with amines. In this experiment the changes in the contents of nitrate nitrite trimethylaminoxide(TMAO) trimethylamine(TMA) and dimethylamine(DMA) during femen-tation of damsel fish were analyzed periodically and N-nitrosamines in a commercial products. N-Nitrosamines were determined by mineral oil distillation methods using gas chromatography-thermal energy anlyzer(GC-TEA) in a commerical product. Nitrate nitrite and amines were quantitate by colorimetric methods. Level of nitrate-N were gradually decreased but nitrite-n was not detected or trace. Contents of dimethlamine(DMA) and trimethlamine were mar-kedly increased while trimethylaminoxide nitrogen was decreased during the fermentation of damsel fish. The change of pH was in the ranges of 5,5-7.0 during fermentation of salted damsel fish. It was out of the optimum pH(3.0-3.4) for the formation of nitrosamine. N-Nitrosamines were not detected in salt-fermented damsel fist but much N-nitrosodimethyla-mine(NDMA) could be detected in salt-fermented damsel fish after adding 0.05M NaNo2 in the acidic condition. The identifaction of NDMA in it was confirmed by mass spectrophotometry. Nitrate decrea-sed during the fermentation of damsel fish. however nitrite was trace level and nitrosamines were not formed in its. This could be supposed that it was due to the rapid consumption of nitrite by amino acid and bacteria.

  • PDF

Tobacco Growth Promotion by the Entomopathogenic Fungus, Isaria javanica pf185

  • Lee, Yong-Seong;Kim, Young Cheol
    • Mycobiology
    • /
    • v.47 no.1
    • /
    • pp.126-133
    • /
    • 2019
  • Isaria javanica pf185 is an important entomopathogenic fungus with potential for use as an agricultural biocontrol agent. However, the effect of I. javanica pf185 on plant growth is unknown. Enhanced tobacco growth was observed when tobacco roots were exposed to spores, cultures, and fungal cell-free culture supernatants of this fungus. Tobacco seedlings were also exposed to the volatiles of I. javanica pf185 in vitro using I-plates in which the plant and fungus were growing in separate compartments connected only by air space. The length and weight of seedlings, content of leaf chlorophyll, and number of root branches were significantly increased by the fungal volatiles. Heptane, 3-hexanone, 2,4-dimethylhexane, and 2-nonanone were detected, by solid-phase micro-extraction and gas chromatography-mass spectrophotometry, as the key volatile compounds produced by I. javanica pf185. These findings illustrate that I. javanica pf185 can be used to promote plant growth, and also as a biocontrol agent of insect and plant diseases. Further studies are necessary to elucidate the mechanisms by which I. javanica pf185 promotes plant growth.

Effect of Seatangle and Seamustard Intakes on Carcinogen Induced DNA Adduct Formation and the Absorption of Calcium and Iron (다시마와 미역의 섭취가 발암물질에 의한 DNA 손상과 칼슘 및 철 흡수에 미치는 영향)

  • 성미경
    • Journal of Nutrition and Health
    • /
    • v.33 no.7
    • /
    • pp.717-724
    • /
    • 2000
  • A number of epidemiological studies has indicated lifestyles including dietary habits are closely related to the development of certain forms of cancer. These findings have led several investigators to identify the ways in which these factors mdulate the risk of cancer. Seaweeds are rich sources of non-digestible polysaccharides which possibly posses physiological functions. In vitro studies showed several components in seaweeds inhibit tumor cell growth and mutagenicity of known food mutagens. On the other hand non-digestible polysaccharides of different food sources negatively affect mineral nutrition by decreasing mineral absorption. The objectives of this study was to investigate the effect of major seaweed intake on azoxymethane(AOM) - induced DNA damage a known cancer initiation step and on apparent absorption of calcium and iron. To accomplish these objectives twenty five ICR mice were divided into five groups and fed one of the following diets for 10 days : control diet d, diet containing 10% water-soluble fraction of seamustard or seatangle diet containing 10% water-insoluble fraction of seamustard or seatangle. AOM was injected 6 hours before sacrifice and N7-methylated guanines from the colonic DNA were quantified using a gas chromatography -mass spectroscopy. Fecal samples were collected on days 4 and 8. Caclium and iron contents of the diets and feces were analyzed using an atomic absorption spectrophotometry to determine the apparent absorption of these minerals. Results are as follows. AOM-induced guanine methylation of colon was decreased in animals fed diets containing water-soluble fractions of seamustard or seatangle compared to those in animals fed control diet although only the seatnagle fed group showed statistically significant effect. Apparent calcium absorption was significantly reduced in animals fed diets containing water-insoluble fractions of seaweeds. Iron absorption was significantly decreased and negatively balanced in animals fed diets containing water-insoluble fractions of both seaweeds, and water-soluble fraction of seatangle. In conclusion, seamustard and seatangle intakes may effectively prevent colon tumorigenesis by reducing a carcinogen-induced DNA damages, and more mechanistic studies on possible role of seaweeds on carcinogenesis are required. Also, adverse effects of seaweed diets cintaming a large amount of polysaccharides on mineral nutrition should be carefully monitored.

  • PDF

Phytochemical Screening and Antibacterial Activity Coix lacryma-jobi Oil

  • Diningrat, Diky Setya;Risfandi, Marsal;Harahap, Novita Sari;Sari, Ayu Nirmala;Kusdianti, Kusdianti;Siregar, Henny Kharina
    • Journal of Plant Biotechnology
    • /
    • v.47 no.1
    • /
    • pp.100-106
    • /
    • 2020
  • Coix lacryma-jobi (Hanjeli) is known to posses anti-microbial properties. Therefore, phytochemical compounds of C. lacryma-jobi have been studied to produce novel antimicrobial agents as treatments against antibiotic-resistant bacteria.The objective of this study was to determine the phytochemical composition and antibacterial activity of the C. lacryma-jobi oil against Escherichia coli, Staphylococcus aureus, and Bacillus subtilis. The phytochemical composition of the oil was determined via gas chromatography mass spectrophotometry (GC-MS). Moreover, agar disk and agar well diffusion were employed to screen the antibacterial activity of the oil. An agar well diffusion test was implemented to determinate MIC's (minimum inhibitory concentrations). Dodecanoic acid, tetradecanoic acid, 2,3-dihydroxypropylester, 1,3-dioctanoin, N-methoxy-N-methyl-3,4-dihydro-2H-thiopyran6-carboxamide, propanamide, 5-Amino-1-(quinolin-8-yl)-1,2,3-triazole-4-carboxamide, and pyridine were identified in the C. lacryma-jobi oil. The MIC value of the oil was 0.031 g/L and the MBC of the oil was 0.125 g/L effective in all test bacteria. Dodecanoic acid displayed inhibitory activity against gram-positive and gram-negative bacteria. Therefore, our research demonstrated C. lacryma-jobi (Hanjeli) oil exhibited antibacterial activity against E. coli, S. aureus, and B. subtilis. These research suggest that C. lacryma-jobi root oil could be used for medicinal purposes; however clinical and in vivo tests must be performed to evaluate its potential as an antibacterial agent.

Biotransformation of Reactive Red 141 by Paenibacillus terrigena KKW2-005 and Examination of Product Toxicity

  • Sompark, Chalermwoot;Singkhonrat, Jirada;Sakkayawong, Niramol
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.7
    • /
    • pp.967-977
    • /
    • 2021
  • A total of 37 bacterial isolates were obtained from dye-contaminated soil samples at a textile processing factory in Nakhon Ratchasima Province, Thailand, and the potential of the isolates to decolorize and biotransform azo dye Reactive Red 141 (RR141) was investigated. The most potent bacterium was identified as Paenibacillus terrigena KKW2-005, which showed the ability to decolorize 96.45% of RR141 (50 mg/l) within 20 h under static conditions at pH 8.0 and a broad temperature range of 30-40℃. The biotransformation products were analyzed by using UV-Vis spectrophotometry and Fourier-transform infrared spectroscopy. Gas chromatography-mass spectroscopy analysis revealed four metabolites generated from the reductive biodegradation, namely sodium 3-diazenylnaphthalene-1,5-disulfonate (I), sodium naphthalene-2-sufonate (II), 4-chloro-1,3,5-triazin-2-amine (III) and N1-(1,3,5-triazin-2-yl) benzene-1,4-diamine (IV). Decolorization intermediates reduced phytotoxicity as compared with the untreated dye. However, they had phytotoxicity when compared with control, probably due to naphthalene and triazine derivatives. Moreover, genotoxicity testing by high annealing temperature-random amplified polymorphic DNA technique exhibited different DNA polymorphism bands in seedlings exposed to the metabolites. They compared to the bands found in seedlings subjected to the untreated dye or distilled water. The data from this study provide evidence that the biodegradation of Reactive Red 141 by P. terrigena KKW2-005 was genotoxic to the DNA seedlings.

Zinc Deficiency Elevates Fecal Protein, But Not Electrolyte and Short-Chain Fatty Acid, Levels in Enterotoxigenic Escherichia coli-Induced Diarrhea in Rats

  • David, Ebuka E.;Yameen, Muhammad A.;Igwenyi, Ikechuku O.;David, Chidinma N.;Nwobodo, Valentine;Ismail, Akindele K.
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.25 no.1
    • /
    • pp.79-86
    • /
    • 2022
  • Purpose: To determine the effect of zinc deficiency on fecal protein, electrolyte, and short-chain fatty acid levels in both heat-stable (ST) and heat-labile (LT) enterotoxigenic Escherichia coli (ETEC)-induced diarrhea in rats. Methods: Albino rats, weighing 100 to 150 g, were divided into 2 groups, with 15 animals each: non-zinc and zinc-deficient. These two groups were sub-divided into three sub-groups with five rats each: control (saline); LT-ETEC; and ST-ETEC. Sodium phytate (30 mmol/L) was added to the animals' water to induce zinc deficiency, while diarrhea was induced using 5×109 ETEC cells/mL. Fecal protein levels were estimated using the Bradford method, while sodium and potassium levels were determined using atomic absorption spectrophotometry. Short-chain fatty acids were measured using gas chromatography-mass spectrometry. Results: Among the non-zinc and zinc-deficient groups, there were significant increases (p=0.04), (p=0.03) in fecal protein concentrations (mg/mL) in the LT-ETEC- (4.50±0.33), (6.50±0.26) and ST-ETEC- (3.85±0.19), (5.98±0.32) induced groups compared to the control groups (2.60±0.52), (3.50±0.11) respectively. Fecal sodium and potassium levels (mg/L) were significantly (p=0.029) increased in non-zinc-deficient rats induced with LT-ETEC (9.35±0.95, 1.05±0.48), and ST-ETEC (9.96±1.02, 1.21±0.45) compared with the control group (8.07±0.44, 0.47±0.17) but the increase were not statistically significant (p=0.059) in the zinc deficient rat groups. Fecal acetate and propionate levels (mg/g) significantly (p=0.032) increased when induced with LT-ETEC and ST-ETEC in non-zinc and zinc-deficient groups compared with the control groups. Conclusion: Zinc deficiency among rats with ETEC-induced diarrhea elevated fecal protein loss but may not have an effect on fecal sodium, potassium and short-chain fatty acid levels.