DOI QR코드

DOI QR Code

통합곤충영양학에 관한 최신 연구동향: 영양기하학적 관점을 중심으로

Recent Trends in Integrative Insect Nutrition: A Nutritional Geometry Perspective

  • 이광범 (서울대학교 농업생명과학대학 농생명공학부 및 농업생명과학연구원) ;
  • 장태환 (서울대학교 농업생명과학대학 농생명공학부 및 농업생명과학연구원) ;
  • 노명석 (서울대학교 농업생명과학대학 농생명공학부 및 농업생명과학연구원)
  • Lee, Kwang Pum (Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University) ;
  • Jang, Taehwan (Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University) ;
  • Rho, Myung Suk (Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University)
  • 투고 : 2021.12.31
  • 심사 : 2022.02.24
  • 발행 : 2022.03.01

초록

영양은 모든 생명활동의 근본이며, 생물의 진화적 적응도를 결정하는 가장 중요한 요인이다. 곤충영양학은 곤충생리학의 전통적인 연구영역이며, 최근 산업곤충의 대량사육 필요성이 증가함에 따라 그 중요성이 부각되고 있다. 이러한 중요성에도 불구하고, 곤충의 영양현상을 정확히 이해하기란 어려운데, 이는 영양의 다변량적 특성, 영양소 간의 교호작용 등으로 설명되는 영양적 복잡성에 기인한다. 영양기하학(Nutritional Geometry)은 이러한 난점을 극복하기 위해 고안된 통합적이고 다차원적인 분석모형으로서, 최근 곤충영양학이 급격하게 발전할 수 있는 이론적 및 실험적 기반을 제공하였다. 본 종설은 영양기하학의 기본개념을 소개하고, 이러한 방법론이 어떻게 최근 곤충영양학의 급속한 학문적 진보를 가능케 하였는지, 그리고 영양이 어떻게 생리학, 생태학, 진화생물학을 통합하는 구심점이 될 수 있었는지를, 최신 연구사례를 중심으로 살펴볼 것이다. 또한 본 종설은 향후 영양기하학을 적용함으로써 발전할 가능성이 높은 연구분야를 고찰할 것이다.

Nutrition dictates nearly all biological processes and determines Darwinian fitness in all living organisms, including insects. Research on insect nutrition has a long history in the field of insect physiology and the importance of understanding insect nutrition has become increasingly apparent with the growing need for producing insects as food and feed. Nevertheless, it is only in recent years that we have witnessed a major breakthrough in our knowledge of insect nutrition. The multivariate, interactive, and dynamic nature of nutrition has long hampered our complete understanding of insect nutrition. However, the challenge posed by such nutritional complexity has been overcome with the advent of the Nutritional Geometry, which is an integrative and multidimensional framework that enabled us to model complex interactions between multiple nutrients. In this review, we introduce the basic concepts and principles of the Nutritional Geometry and describe how this innovative framework has revolutionized the field of insect nutrition and has placed nutrition in the centre of the interface between physiology, ecology, and evolution. We close this review by discussing potentially fertile research areas that can benefit tremendously from the application of this powerful nutritional paradigm in the future.

키워드

과제정보

We would like to dedicate this work to the memory of the late Professor Kyung-Saeng Boo. This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) grant funded by the Ministry of Education, Republic of Korea (Grant no. NRF-2020R1I1A2070399).

참고문헌

  1. Abisgold, J.D., Simpson, S.J., Douglas, A.E., 1994. Nutrient regulation in the pea aphid Acyrthosiphon pisum: application of a novel geometric framework to sugar and amino acid consumption. Physiol. Entomol. 19, 95-102. https://doi.org/10.1111/j.1365-3032.1994.tb01081.x
  2. Al Shareefi, E., Cotter, S.C., 2019. The nutritional ecology of maturation in a carnivorous insect. Behav. Ecol. 30, 256-266. https://doi.org/10.1093/beheco/ary142
  3. Alton, L.A., Kutz, T.C., Bywater, C.L., Beaman, J.E., Arnold, P.A., Mirth, C.K., Sgro, C.M., White, C.R., 2020. Developmental nutrition modulates metabolic responses to projected climate change. Funct. Ecol. 34, 2488-2502. https://doi.org/10.1111/1365-2435.13663
  4. Behmer, S.T., 2009. Insect herbivore nutrient regulation. Annu. Rev. Entomol. 54, 165-187. https://doi.org/10.1146/annurev.ento.54.110807.090537
  5. Behmer, S.T., Joern, A., 2008. Coexisting generalist herbivores occupy unique nutritional feeding niches. Proc. Natl. Acad. Sci. U.S.A. 105, 1977-1982. https://doi.org/10.1073/pnas.0711870105
  6. Bonduriansky, R., Runagall-McNaull, A., Crean, A.J., 2016. The nutritional geometry of parental effects: maternal and paternal macronutrient consumption and offspring phenotype in a neriid fly. Funct. Ecol. 30, 1675-1686. https://doi.org/10.1111/1365-2435.12643
  7. Bowman, E., Tatar, M., 2016. Reproduction regulates Drosophila nutrient intake through independent effects of egg production and sex peptide: implications for aging. Nutr. Healthy Aging. 4, 55-61. https://doi.org/10.3233/NHA-1613
  8. Bruce, K.D., Hoxha, S., Carvalho, G.B., Yamada, R., Wang, H.D., Karayan, P., He, S., Brummel, T., Kapahi, P., Ja, W.W., 2013. High carbohydrate-low protein consumption maximizes Drosophila lifespan. Exp. Gerontol. 48, 1129-1135. https://doi.org/10.1016/j.exger.2013.02.003
  9. Camus, M.F., Fowler, K., Piper, M.W.D., Reuter, M., 2017. Sex and genotype effects on nutrient-dependent fitness landscapes in Drosophila melanogaster. Proc. Royal Soc. B 284, 20172237. https://doi.org/10.1098/rspb.2017.2237
  10. Camus, M.F., Huang, C.C., Reuter, M., Fowler, K., 2018. Dietary choices are influenced by genotype, mating status, and sex in Drosophila melanogaster. Ecol. Evol. 8, 5385-5393. https://doi.org/10.1002/ece3.4055
  11. Cavigliasso, F., Dupuis, C., Savary, L., Spangenberg, J.E., Kawecki, T.J., 2020. Experimental evolution of post-ingestive nutritional compensation in response to a nutrient-poor diet. Proc. Royal Soc. B 287, 20202684. https://doi.org/10.1098/rspb.2020.2684
  12. Chapman, R.F., 2013. The insects: structure and function, 5th ed., Cambridge University Press, Cambridge.
  13. Cheon, D.A., Jang, T., Lee, K.P., 2022. Visualising the nutritional performance landscapes for the black soldier fly, Hermetia illucens (Diptera: Stratiomyidae). J. Insects Food Feed in press.
  14. Chown, S.L., Nicolson, S.W., 2004. Insect physiological ecology: mechanisms and patterns, Oxford University Press, Oxford.
  15. Cotter, S.C., Simpson, S.J., Raubenheimer, D., Wilson, K., 2011. Macronutrient balance mediates trade-offs between immune function and life history traits. Funct. Ecol. 25, 186-198. https://doi.org/10.1111/j.1365-2435.2010.01766.x
  16. Dussutour, A., Latty, T., Beekman, M., Simpson, S.J., 2010. Amoeboid organism solves complex nutritional challenges. Proc. Natl. Acad. Sci. U.S.A. 107, 4607-4611. https://doi.org/10.1073/pnas.0912198107
  17. Fanson, B.G., Taylor, P.W., 2012. Protein:carbohydrate ratios explain life span patterns found in Queensland fruit fly on diets varying in yeast:sugar ratios. Age 34, 1361-1368. https://doi.org/10.1007/s11357-011-9308-3
  18. Fanson, B.G., Weldon, C.W., Perez-Staples, D., Simpson, S.J., Taylor, P.W., 2009. Nutrients, not caloric restriction, extend lifespan in Queensland fruit flies (Bactrocera tryoni). Aging Cell 8, 514-523. https://doi.org/10.1111/j.1474-9726.2009.00497.x
  19. Flatt, T., 2011. Survival costs of reproduction in Drosophila. Exp. Gerontol. 46, 369-375. https://doi.org/10.1016/j.exger.2010.10.008
  20. Flatt, T., Heyland, A., 2011. Mechanisms of life history evolution: the genetics and physiology of life history traits and trade-offs, Oxford University Press, Oxford.
  21. Gosby, A.K., Conigrave, A.D., Raubenheimer, D., Simpson, S.J., 2014. Protein leverage and energy intake. Obes. Rev. 15, 183-191. https://doi.org/10.1111/obr.12131
  22. Gray, L.J., Simpson, S.J., Polak, M., 2018. Fruit flies may face a nutrient-dependent life-history trade-off between secondary sexual trait quality, survival and developmental rate. J. Insect Physiol. 104, 60-70. https://doi.org/10.1016/j.jinsphys.2017.11.010
  23. Gullan, P.J., Cranston, P.S., 2014. The insects: an outline of entomology, John Wiley & Sons, New York.
  24. Harrison, J.F., Woods, H.A., Roberts, S.P., 2012. Ecological and environmental physiology of insects, Oxford University Press, Oxford.
  25. Harrison, S.J., Raubenheimer, D., Simpson, S.J., Godin, J.-G.J., Bertram, S.M., 2014. Towards a synthesis of frameworks in nutritional ecology: interacting effects of protein, carbohydrate and phosphorus on field cricket fitness. Proc. Royal Soc. B 281, 20140539. https://doi.org/10.1098/rspb.2014.0539
  26. Hawlena, D., Schmitz, O.J., 2010. Herbivore physiological response to predation risk and implications for ecosystem nutrient dynamics. Proc. Natl. Acad. Sci. U.S.A. 107, 15503-15507. https://doi.org/10.1073/pnas.1009300107
  27. Holmes, A.J., Chew, Y.V., Colakoglu, F., Cliff, J.B., Klaassens, E., Read, M.N., Solon-Biet, S.M., McMahon, A.C., Cogger, V.C., Ruohonen, K., Raubenheimer, D., Le Couteur, D.G., Simpson, S.J., 2017. Diet-microbiome interactions in health are controlled by intestinal nitrogen source constraints. Cell Metab. 25, 140-151. https://doi.org/10.1016/j.cmet.2016.10.021
  28. Jang, T., Lee, K.P., 2018. Comparing the impacts of macronutrients on life-history traits in larval and adult Drosophila melanogaster: the use of nutritional geometry and chemically defined diets. J. Exp. Biol. 221, jeb181115. https://doi.org/10.1242/jeb.181115
  29. Jensen, K., Kristensen, T., Heckmann, L.-H., Sorensen, J., 2017. Breeding and maintaining high-quality insects, in: van Huis, A., Tomberlin, J.K. (Eds.), Insects as food and feed: from production to consumption. Wageningen Academic Publishers, Wageningen, pp. 175-198.
  30. Jensen, K., Mayntz, D., Toft, S., Clissold, F.J., Hunt, J., Raubenheimer, D., Simpson, S.J., 2012. Optimal foraging for specific nutrients in predatory beetles. Proc. Royal Soc. B 279, 2212-2218. https://doi.org/10.1098/rspb.2011.2410
  31. Jensen, K., Mayntz, D., Toft, S., Raubenheimer, D., Simpson, S.J., 2011. Nutrient regulation in a predator, the wolf spider Pardosa prativaga. Anim. Behav. 81, 993-999. https://doi.org/10.1016/j.anbehav.2011.01.035
  32. Jensen, K., McClure, C., Priest, N.K., Hunt, J., 2015. Sex-specific effects of protein and carbohydrate intake on reproduction but not lifespan in Drosophila melanogaster. Aging Cell 14, 605-615. https://doi.org/10.1111/acel.12333
  33. Kapahi, P., Chen, D., Rogers, A.N., Katewa, S.D., Li, P.W., Thomas, E.L., Kockel, L., 2010. With TOR, less is more: a key role for the conserved nutrient-sensing TOR pathway in aging. Cell Metab. 11, 453-465. https://doi.org/10.1016/j.cmet.2010.05.001
  34. Kim, K., Jang, T., Min, K.-J., Lee, K.P., 2020. Effects of dietary protein:carbohydrate balance on life-history traits in six laboratory strains of Drosophila melanogaster. Entomol. Exp. Appl. 168, 482-491. https://doi.org/10.1111/eea.12855
  35. Kirkwood, T.B.L., 2005. Understanding the odd science of aging. Cell 120, 437-447. https://doi.org/10.1016/j.cell.2005.01.027
  36. Koemel, N.A., Senior, A.M., Dissanayake, H.U., Ross, J., McMullan, R.L., Kong, Y., Phang, M., Hyett, J., Raubenheimer, D., Gordon, A., Simpson, S.J., Skilton, M.R., 2022. Maternal dietary fatty acid composition and newborn epigenetic aging - a geometric framework approach. Am. J. Clin. Nutr. 115, 118-127. https://doi.org/10.1093/ajcn/nqab318
  37. Kutz, T.C., Sgro, C.M., Mirth, C.K., 2019. Interacting with change: diet mediates how larvae respond to their thermal environment. Funct. Ecol. 33, 1940-1951. https://doi.org/10.1111/1365-2435.13414
  38. Le Couteur, D.G., Solon-Biet, S., Cogger, V.C., Mitchell, S.J., Senior, A., de Cabo, R., Raubenheimer, D., Simpson, S.J., 2016. The impact of low-protein high-carbohydrate diets on aging and lifespan. Cell. Mol. Life Sci. 73, 1237-1252. https://doi.org/10.1007/s00018-015-2120-y
  39. Lee, K.P., 2010. Sex-specific differences in nutrient regulation in a capital breeding caterpillar, Spodoptera litura (Fabricius). J. Insect Physiol. 56, 1685-1695. https://doi.org/10.1016/j.jinsphys.2010.06.014
  40. Lee, K.P., 2015. Dietary protein:carbohydrate balance is a critical modulator of lifespan and reproduction in Drosophila melanogaster: a test using a chemically defined diet. J. Insect Physiol. 75, 12-19. https://doi.org/10.1016/j.jinsphys.2015.02.007
  41. Lee, K.P., Behmer, S.T., Simpson, S.J., 2006a. Nutrient regulation in relation to diet breadth: a comparison of Heliothis sister species and a hybrid. J. Exp. Biol. 209, 2076-2084. https://doi.org/10.1242/jeb.02253
  42. Lee, K.P., Behmer, S.T., Simpson, S.J., Raubenheimer, D., 2002. A geometric analysis of nutrient regulation in the generalist caterpillar Spodoptera littoralis (Boisduval). J. Insect Physiol. 48, 655-665. https://doi.org/10.1016/S0022-1910(02)00088-4
  43. Lee, K.P., Cory, J.S., Wilson, K., Raubenheimer, D., Simpson, S.J., 2006b. Flexible diet choice offsets protein costs of pathogen resistance in a caterpillar. Proc. Royal Soc. B 273, 823-829. https://doi.org/10.1098/rspb.2005.3385
  44. Lee, K.P., Jang, T., Ravzanaadii, N., Rho, M.S., 2015. Macronutrient balance modulates the temperature-size rule in an ectotherm. Am. Nat. 186, 212-222. https://doi.org/10.1086/682072
  45. Lee, K.P., Kim, J.-S., Min, K.-J., 2013. Sexual dimorphism in nutrient intake and life span is mediated by mating in Drosophila melanogaster. Anim. Behav. 86, 987-992. https://doi.org/10.1016/j.anbehav.2013.08.018
  46. Lee, K.P., Kwon, S.-T., Roh, C., 2012. Caterpillars use developmental plasticity and diet choice to overcome the early life experience of nutritional imbalance. Anim. Behav. 84, 785-793. https://doi.org/10.1016/j.anbehav.2012.06.033
  47. Lee, K.P., Raubenheimer, D., Behmer, S.T., Simpson, S.J., 2003. A correlation between macronutrient balancing and insect host-plant range: evidence from the specialist caterpillar Spodoptera exempta (Walker). J. Insect Physiol. 49, 1161-1171. https://doi.org/10.1016/j.jinsphys.2003.08.013
  48. Lee, K.P., Simpson, S.J., Clissold, F.J., Brooks, R., Ballard, J.W.O., Taylor, P.W., Soran, N., Raubenheimer, D., 2008. Lifespan and reproduction in Drosophila: new insights from nutritional geometry. Proc. Nat. Acad. Sci. U.S.A. 105, 2498-2503. https://doi.org/10.1073/pnas.0710787105
  49. Leulier, F., MacNeil, L.T., Lee, W., Rawls, J.F., Cani, P.D., Schwarzer, M., Zhao, L., Simpson, S.J., 2017. Integrative physiology: at the crossroads of nutrition, microbiota, animal physiology, and human health. Cell Metab. 25, 522-534. https://doi.org/10.1016/j.cmet.2017.02.001
  50. Lihoreau, M., Buhl, J., Charleston, M.A., Sword, G.A., Raubenheimer, D., Simpson, S.J., 2014. Modelling nutrition across organizational levels: from individuals to superorganisms. J. Insect Physiol. 69, 2-11. https://doi.org/10.1016/j.jinsphys.2014.03.004
  51. Lihoreau, M., Buhl, J., Charleston, M.A., Sword, G.A., Raubenheimer, D., Simpson, S.J., 2015. Nutritional ecology beyond the individual: a conceptual framework for integrating nutrition and social interactions. Ecol. Lett. 18, 273-286. https://doi.org/10.1111/ele.12406
  52. Machovsky-Capuska, G.E., Senior, A.M., Simpson, S.J., Raubenheimer, D., 2016. The multidimensional nutritional niche. Trends Ecol. Evol. 31, 355-365. https://doi.org/10.1016/j.tree.2016.02.009
  53. Mair, W., Piper, M.D.W., Partridge, L., 2005. Calories do not explain extension of life span by dietary restriction in Drosophila. PLoS Biol. 3, e223. https://doi.org/10.1371/journal.pbio.0030223
  54. Maklakov, A.A., Simpson, S.J., Zajitschek, F., Hall, M.D., Dessmann, J., Clissold, F., Raubenheimer, D., Bonduriansky, R., Brooks, R.C., 2008. Sex-specific fitness effects of nutrient intake on reproduction and lifespan. Curr. Biol. 18, 1062-1066. https://doi.org/10.1016/j.cub.2008.06.059
  55. Masoro, E.J., 2005. Overview of caloric restriction and ageing. Mech. Ageing Dev. 126, 913-922. https://doi.org/10.1016/j.mad.2005.03.012
  56. Matavelli, C., Carvalho, M.J.A., Martins, N.E., Mirth, C.K., 2015. Differences in larval nutritional requirements and female oviposition preference reflect the order of fruit colonization of Zaprionus indianus and Drosophila simulans. J. Insect Physiol. 82, 66-74. https://doi.org/10.1016/j.jinsphys.2015.09.003
  57. Mattson, W.J., 1980. Herbivory in relation to plant nitrogen content. Annu. Rev. Ecol. Syst. 11, 119-161. https://doi.org/10.1146/annurev.es.11.110180.001003
  58. Mayntz, D., Nielsen, V.H., Sorensen, A., Toft, S., Raubenheimer, D., Hejlesen, C., Simpson, S.J., 2009. Balancing of protein and lipid intake by a mammalian carnivore, the mink, Mustela vison. Anim. Behav. 77, 349-355. https://doi.org/10.1016/j.anbehav.2008.09.036
  59. Mayntz, D., Raubenheimer, D., Salomon, M., Toft, S., Simpson, S.J., 2005. Nutrient-specific foraging in invertebrate predators. Science 307, 111-113. https://doi.org/10.1126/science.1105493
  60. Min, K.-J., Tatar, M., 2006. Restriction of amino acids extends lifespan in Drosophila melanogaster. Mech. Ageing Dev. 127, 643-646. https://doi.org/10.1016/j.mad.2006.02.005
  61. Mirth, C.K., Nogueira Alves, A., Piper, M.D., 2019. Turning food into eggs: insights from nutritional biology and developmental physiology of Drosophila. Curr. Opin. Insect Sci. 31, 49-57. https://doi.org/10.1016/j.cois.2018.08.006
  62. Moatt, J.P., Fyfe, M.A., Heap, E., Mitchell, L.J.M., Moon, F., Walling, C.A., 2019. Reconciling nutritional geometry with classical dietary restriction: effects of nutrient intake, not calories, on survival and reproduction. Aging Cell 18, e12868. https://doi.org/10.1111/acel.12868
  63. Moatt, J.P., Savola, E., Regan, J.C., Nussey, D.H., Walling, C.A., 2020. Lifespan extension via dietary restriction: time to reconsider the evolutionary mechanisms? BioEssays 42, 1900241. https://doi.org/10.1002/bies.201900241
  64. Morimoto, J., Lihoreau, M., 2019. Quantifying nutritional trade-offs across multidimensional performance landscapes. Am. Nat. 193, E168-E181. https://doi.org/10.1086/701898
  65. Nagarajan-Radha, V., Rapkin, J., Hunt, J., Dowling, D.K., 2019. Interactions between mitochondrial haplotype and dietary macronutrient ratios confer sex-specific effects on longevity in Drosophila melanogaster. Gerontol. A Biol. Sci. Med. Sci. 74, 1573-1581. https://doi.org/10.1093/gerona/glz104
  66. Nakagawa, S., Lagisz, M., Hector, K.L., Spencer, H.G., 2012. Comparative and meta-analytic insights into life extension via dietary restriction. Aging Cell 11, 401-409. https://doi.org/10.1111/j.1474-9726.2012.00798.x
  67. Oonincx, D.G.A.B., 2017. Environmental impact of insect production, in: van Huis, A., Tomberlin, J.K. (Eds.), Insects as food and feed: from production to consumption. Wageningen Academic Publishers, Wageningen, pp. 79-93.
  68. Paoli, P.P., Donley, D., Stabler, D., Saseendranath, A., Nicolson, S.W., Simpson, S.J., Wright, G.A., 2014. Nutritional balance of essential amino acids and carbohydrates of the adult worker honeybee depends on age. Amino Acids 46, 1449-1458. https://doi.org/10.1007/s00726-014-1706-2
  69. Partridge, L., Gems, D., Withers, D.J., 2005. Sex and death: what is the connection? Cell 120, 461-472. https://doi.org/10.1016/j.cell.2005.01.026
  70. Piper, M.D.W., Partridge, L., Raubenheimer, D., Simpson, S.J., 2011. Dietary restriction and aging: a unifying perspective. Cell Metab. 14, 154-160. https://doi.org/10.1016/j.cmet.2011.06.013
  71. Piper, M.D.W., Soultoukis, G.A., Blanc, E., Mesaros, A., Herbert, S.L., Juricic, P., He, X., Atanassov, I., Salmonowicz, H., Yang, M., Simpson, S.J., Ribeiro, C., Partridge, L., 2017. Matching dietary amino acid balance to the in silico-translated exome optimizes growth and reproduction without cost to lifespan. Cell Metab. 25, 610-621. https://doi.org/10.1016/j.cmet.2017.02.005
  72. Polak, M., Simmons, L.W., Benoit, J.B., Ruohonen, K., Simpson, S.J., Solon-Biet, S.M., 2017. Nutritional geometry of paternal effects on embryo mortality. Proc. Royal Soc. B 284, 20171492. https://doi.org/10.1098/rspb.2017.1492
  73. Povey, S., Cotter, S.C., Simpson, S.J., Lee, K.P., Wilson, K., 2009. Can the protein costs of bacterial resistance be offset by altered feeding behaviour? J. Anim. Ecol. 78, 437-446. https://doi.org/10.1111/j.1365-2656.2008.01499.x
  74. Rapkin, J., Jensen, K., Archer, C.R., House, C.M., Sakaluk, S.K., Castillo, E. del, Hunt, J., 2018. The geometry of nutrient space-based life-history trade-offs: sex-specific effects of macronutrient intake on the trade-off between encapsulation ability and reproductive effort in decorated crickets. Am. Nat. 191, 452-474. https://doi.org/10.1086/696147
  75. Raubenheimer, D., Jones, S.A., 2006. Nutritional imbalance in an extreme generalist omnivore: tolerance and recovery through complementary food selection. Anim. Behav. 71, 1253-1262. https://doi.org/10.1016/j.anbehav.2005.07.024
  76. Raubenheimer, D., Mayntz, D., Simpson, S.J., Toft, S., 2007. Nutrient-specific compensation following diapause in a predator: implications for intraguild predation. Ecology 88, 2598-2608. https://doi.org/10.1890/07-0012.1
  77. Raubenheimer, D., Simpson, S.J., 1999. Integrating nutrition: a geometrical approach, in: Simpson, S.J., Mordue, A.J., Hardie, J. (Eds.), Proceedings of the 10th international symposium on insect-plant relationships. Springer Science and Business Media, Dordrecht, pp. 67-82.
  78. Raubenheimer, D., Simpson, S.J., 2003. Nutrient balancing in grasshoppers: behavioural and physiological correlates of dietary breadth. J. Exp. Biol. 206, 1669-1681. https://doi.org/10.1242/jeb.00336
  79. Raubenheimer, D., Simpson, S.J., 2016. Nutritional ecology and human health. Annu. Rev. Nutr. 36, 603-626. https://doi.org/10.1146/annurev-nutr-071715-051118
  80. Raubenheimer, D., Simpson, S.J., Mayntz, D., 2009. Nutrition, ecology and nutritional ecology: toward an integrated framework. Funct. Ecol. 23, 4-16. https://doi.org/10.1111/j.1365-2435.2009.01522.x
  81. Raubenheimer, D., Simpson, S.J., Tait, A.H., 2012. Match and mismatch: conservation physiology, nutritional ecology and the timescales of biological adaptation. Philos. Trans. R. Soc. Lond. B Biol. Sci. 367, 1628-1646. https://doi.org/10.1098/rstb.2012.0007
  82. Reddiex, A.J., Gosden, T.P., Bonduriansky, R., Chenoweth, S.F., 2013. Sex-specific fitness consequences of nutrient intake and the evolvability of diet preferences. Am. Nat. 182, 91-102. https://doi.org/10.1086/670649
  83. Rho, M.S., Lee, K.P., 2014. Geometric analysis of nutrient balancing in the mealworm beetle, Tenebrio molitor L. (Coleoptera: Tenebrionidae). J. Insect Physiol. 71, 37-45. https://doi.org/10.1016/j.jinsphys.2014.10.001
  84. Rho, M.S., Lee, K.P., 2015. Nutrient-specific food selection buffers the effect of nutritional imbalance in the mealworm beetle, Tenebrio molitor (Coleoptera: Tenebrionidae). Eur. J. Entomol. 112, 251-258. https://doi.org/10.14411/eje.2015.030
  85. Rho, M.S., Lee, K.P., 2016. Balanced intake of protein and carbohydrate maximizes lifetime reproductive success in the mealworm beetle, Tenebrio molitor (Coleoptera: Tenebrionidae). J. Insect Physiol. 91, 93-99. https://doi.org/10.1016/j.jinsphys.2016.07.002
  86. Rho, M.S., Lee, K.P., 2017. Temperature-driven plasticity in nutrient use and preference in an ectotherm. Oecologia 185, 401-413. https://doi.org/10.1007/s00442-017-3959-4
  87. Rho, M.S., Lee, K.P., 2022. Behavioural and physiological regulation of protein and carbohydrates in mealworm larvae: a geometric analysis. J. Insect Physiol. 136, 104329. https://doi.org/10.1016/j.jinsphys.2021.104329
  88. Rodrigues, M.A., Martins, N.E., Balance, L.F., Broom, L.N., Dias, A.J.S., Fernandes, A.S.D., Rodrigues, F., Sucena, E., Mirth, C.K., 2015. Drosophila melanogaster larvae make nutritional choices that minimize developmental time. J. Insect Physiol. 81, 69-80. https://doi.org/10.1016/j.jinsphys.2015.07.002
  89. Roff, D.A., 2002. Life history evolution, Oxford University Press, Oxford.
  90. Rosenblatt, A.E., Schmitz, O.J., 2016. Climate change, nutrition, and bottom-up and top-down food web processes. Trends Ecol. Evol. 31, 965-975. https://doi.org/10.1016/j.tree.2016.09.009
  91. Ruohonen, K., Simpson, S.J., Raubenheimer, D., 2007. A new approach to diet optimisation: a re-analysis using European whitefish (Coregonus lavaretus). Aquaculture 267, 147-156. https://doi.org/10.1016/j.aquaculture.2007.02.051
  92. Sanz, A., Caro, P., Barja, G., 2004. Protein restriction without strong caloric restriction decreases mitochondrial oxygen radical production and oxidative DNA damage in rat liver. J. Bioenerg. Biomembr. 36, 545-552. https://doi.org/10.1007/s10863-004-9001-7
  93. Schmitz, O.J., Rosenblatt, A.E., Smylie, M., 2016. Temperature dependence of predation stress and the nutritional ecology of a generalist herbivore. Ecology 97, 3119-3130. https://doi.org/10.1002/ecy.1524
  94. Scriber, J.M., Slansky, F., 1981. The nutritional ecology of immature insects. Annu. Rev. Entomol. 26, 183-211. https://doi.org/10.1146/annurev.en.26.010181.001151
  95. Semaniuk, U., Feden'ko, K., Yurkevych, I.S., Storey, K.B., Simpson, S.J., Lushchak, O., 2018. Within-diet variation in rates of macronutrient consumption and reproduction does not accompany changes in lifespan in Drosophila melanogaster. Entomol. Exp. Appl. 166, 74-80. https://doi.org/10.1111/eea.12643
  96. Shik, J.Z., Kooij, P.W., Donoso, D.A., Santos, J.C., Gomez, E.B., Franco, M., Crumiere, A.J.J., Arnan, X., Howe, J., Wcislo, W.T., Boomsma, J.J., 2021. Nutritional niches reveal fundamental domestication trade-offs in fungus-farming ants. Nat. Ecol. Evol. 5, 122-134. https://doi.org/10.1038/s41559-020-01314-x
  97. Shikano, I., Cory, J.S., 2016. Altered nutrient intake by baculovirus-challenged insects: self-medication or compensatory feeding? J. Invertebr. Pathol. 139, 25-33. https://doi.org/10.1016/j.jip.2016.07.005
  98. Shingleton, A.W., Masandika, J.R., Thorsen, L.S., Zhu, Y., Mirth, C.K., 2017. The sex-specific effects of diet quality versus quantity on morphology in Drosophila melanogaster. R. Soc. Open Sci. 4, 170375. https://doi.org/10.1098/rsos.170375
  99. Silva-Soares, N.F., Nogueira-Alves, A., Beldade, P., Mirth, C.K., 2017. Adaptation to new nutritional environments: larval performance, foraging decisions, and adult oviposition choices in Drosophila suzukii. BMC Ecol. 17, 1-13. https://doi.org/10.1186/s12898-016-0111-y
  100. Simpson, S.J., Clissold, F.J., Lihoreau, M., Ponton, F., Wilder, S.M., Raubenheimer, D., 2015a. Recent advances in the integrative nutrition of arthropods. Annu. Rev. Entomol. 60, 293-311. https://doi.org/10.1146/annurev-ento-010814-020917
  101. Simpson, S.J., Le Couteur, D.G., James, D.E., George, J., Gunton, J.E., Solon-Biet, S.M., Raubenheimer, D., 2017. The geometric framework for nutrition as a tool in precision medicine. Nutr. Healthy Aging 4, 217-226. https://doi.org/10.3233/nha-170027
  102. Simpson, S.J., Le Couteur, D.G., Raubenheimer, D., 2015b. Putting the balance back in diet. Cell 161, 18-23. https://doi.org/10.1016/j.cell.2015.02.033
  103. Simpson, S.J., Raubenheimer, D., 1993. A multi-level analysis of feeding behaviour: the geometry of nutritional decisions. Philos. Trans. R. Soc. Lond. B Biol. Sci. 342, 381-402. https://doi.org/10.1098/rstb.1993.0166
  104. Simpson, S.J., Raubenheimer, D., 2005. Obesity: the protein leverage hypothesis. Obes. Rev. 6, 133-142. https://doi.org/10.1111/j.1467-789X.2005.00178.x
  105. Simpson, S.J., Raubenheimer, D., 2009. Macronutrient balance and lifespan. Aging 1, 875-880. https://doi.org/10.18632/aging.100098
  106. Simpson, S.J., Raubenheimer, D., 2012. The nature of nutrition: a unifying framework from animal adaptation to human obesity. Princeton University Press, Princeton.
  107. Simpson, S.J., Sibly, R.M., Lee, K.P., Behmer, S.T., Raubenheimer, D., 2004. Optimal foraging when regulating intake of multiple nutrients. Anim. Behav. 68, 1299-1311. https://doi.org/10.1016/j.anbehav.2004.03.003
  108. Simpson, S.J., Simpson, C.L., 1990. The mechanisms of nutritional compensation by phytophagous insects, in: Bernays, E.A. (Ed.), Insect-plant Interactions. CRC Press, New York, pp. 112-160.
  109. Sinclair, D.A., 2005. Toward a unified theory of caloric restriction and longevity regulation. Mech. Ageing Dev. 126, 987-1002. https://doi.org/10.1016/j.mad.2005.03.019
  110. Skorupa, D.A., Dervisefendic, A., Zwiener, J., Pletcher, S.D., 2008. Dietary composition specifies consumption, obesity, and lifespan in Drosophila melanogaster. Aging Cell 7, 478-490. https://doi.org/10.1111/j.1474-9726.2008.00400.x
  111. Slansky, F., 1993. Nutritional ecology: the fundamental quest for nutrients, in: Stamp, N.E., Casey, T.M. (Eds.), Caterpillars: ecological and evolutionary constraints on foraging. Chapman & Hall, New York, pp. 29-91.
  112. Solon-Biet, S.M., Cogger, V.C., Pulpitel, T., Wahl, D., Clark, X., Bagley, E.E., Gregoriou, G.C., Senior, A.M., Wang, Q.-P., Brandon, A.E., Perks, R., O'Sullivan, J., Koay, Y.C., Bell-Anderson, K., Kebede, M., Yau, B., Atkinson, C., Svineng, G., Dodgson, T., Wali, J.A., Piper, M.D.W., Juricic, P., Partridge, L., Rose, A.J., Raubenheimer, D., Cooney, G.J., Le Couteur, D.G., Simpson, S.J., 2019. Branched-chain amino acids impact health and lifespan indirectly via amino acid balance and appetite control. Nat. Metab. 1, 532-545. https://doi.org/10.1038/s42255-019-0059-2
  113. Solon-Biet, S.M., McMahon, A.C., Ballard, J.W.O., Ruohonen, K., Wu, L.E., Cogger, V.C., Warren, A., Huang, X., Pichaud, N., Melvin, R.G., Gokarn, R., Khalil, M., Turner, N., Cooney, G.J., Sinclair, D.A., Raubenheimer, D., Le Couteur, D.G., Simpson, S.J., 2014. The ratio of macronutrients, not caloric intake, dictates cardiometabolic health, aging, and longevity in ad libitum-fed mice. Cell Metab. 19, 418-430. https://doi.org/10.1016/j.cmet.2014.02.009
  114. Solon-Biet, S.M., Mitchell, S.J., Coogan, S.C.P., Cogger, V.C., Gokarn, R., McMahon, A.C., Raubenheimer, D., de Cabo, R., Simpson, S.J., Le Couteur, D.G., 2015. Dietary protein to carbohydrate ratio and caloric restriction: comparing metabolic outcomes in mice. Cell Rep. 11, 1529-1534. https://doi.org/10.1016/j.celrep.2015.05.007
  115. Stearns, S.C., 1989. Trade-offs in life-history evolution. Funct. Ecol. 3, 259-268. https://doi.org/10.2307/2389364
  116. Stearns, S.C., 1992. The evolution of life histories, Oxford University Press, Oxford.
  117. Tatar, M., Post, S., Yu, K., 2014. Nutrient control of Drosophila longevity. Trends Endocrinol. Metab. 25, 509-517. https://doi.org/10.1016/j.tem.2014.02.006
  118. van Huis, A., 2013. Potential of insects as food and feed in assuring food security. Annu. Rev. Entomol. 58, 563-583. https://doi.org/10.1146/annurev-ento-120811-153704
  119. van Huis, A., 2020. Insects as food and feed, a new emerging agricultural sector: a review. J. Insects Food Feed 6, 27-44. https://doi.org/10.3920/JIFF2019.0017
  120. Waldbauer, G.P., Friedman, S., 1991. Self-selection of optimal diets by insects. Annu. Rev. Entomol. 36, 43-63. https://doi.org/10.1146/annurev.en.36.010191.000355
  121. Wali, J.A., Milner, A.J., Luk, A.W.S., Pulpitel, T.J., Dodgson, T., Facey, H.J.W., Wahl, D., Kebede, M.A., Senior, A.M., Sullivan, M.A., Brandon, A.E., Yau, B., Lockwood, G.P., Koay, Y.C., Ribeiro, R., Solon-Biet, S.M., Bell-Anderson, K.S., O'Sullivan, J.F., Macia, L., Forbes, J.M., Cooney, G.J., Cogger, V.C., Holmes, A., Raubenheimer, D., Le Couteur, D.G., Simpson, S.J., 2021. Impact of dietary carbohydrate type and protein-carbohydrate interaction on metabolic health. Nat. Metab. 3, 810-828. https://doi.org/10.1038/s42255-021-00393-9
  122. Warbrick-Smith, J., Behmer, S.T., Lee, K.P., Raubenheimer, D., Simpson, S.J., 2006. Evolving resistance to obesity in an insect. Proc. Natl. Acad. Sci. U.S.A. 103, 14045-14049. https://doi.org/10.1073/pnas.0605225103
  123. Wheeler, D., 1996. The role of nourishment in oogenesis. Annu. Rev. Entomol. 41, 407-431. https://doi.org/10.1146/annurev.en.41.010196.002203