Browse > Article
http://dx.doi.org/10.5656/KSAE.2022.02.1.068

Recent Trends in Integrative Insect Nutrition: A Nutritional Geometry Perspective  

Lee, Kwang Pum (Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University)
Jang, Taehwan (Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University)
Rho, Myung Suk (Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University)
Publication Information
Korean journal of applied entomology / v.61, no.1, 2022 , pp. 129-142 More about this Journal
Abstract
Nutrition dictates nearly all biological processes and determines Darwinian fitness in all living organisms, including insects. Research on insect nutrition has a long history in the field of insect physiology and the importance of understanding insect nutrition has become increasingly apparent with the growing need for producing insects as food and feed. Nevertheless, it is only in recent years that we have witnessed a major breakthrough in our knowledge of insect nutrition. The multivariate, interactive, and dynamic nature of nutrition has long hampered our complete understanding of insect nutrition. However, the challenge posed by such nutritional complexity has been overcome with the advent of the Nutritional Geometry, which is an integrative and multidimensional framework that enabled us to model complex interactions between multiple nutrients. In this review, we introduce the basic concepts and principles of the Nutritional Geometry and describe how this innovative framework has revolutionized the field of insect nutrition and has placed nutrition in the centre of the interface between physiology, ecology, and evolution. We close this review by discussing potentially fertile research areas that can benefit tremendously from the application of this powerful nutritional paradigm in the future.
Keywords
Fitness; Life-history trade-off; Macronutrients; Nutrient balance; Nutritional landscape;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Wali, J.A., Milner, A.J., Luk, A.W.S., Pulpitel, T.J., Dodgson, T., Facey, H.J.W., Wahl, D., Kebede, M.A., Senior, A.M., Sullivan, M.A., Brandon, A.E., Yau, B., Lockwood, G.P., Koay, Y.C., Ribeiro, R., Solon-Biet, S.M., Bell-Anderson, K.S., O'Sullivan, J.F., Macia, L., Forbes, J.M., Cooney, G.J., Cogger, V.C., Holmes, A., Raubenheimer, D., Le Couteur, D.G., Simpson, S.J., 2021. Impact of dietary carbohydrate type and protein-carbohydrate interaction on metabolic health. Nat. Metab. 3, 810-828.   DOI
2 Warbrick-Smith, J., Behmer, S.T., Lee, K.P., Raubenheimer, D., Simpson, S.J., 2006. Evolving resistance to obesity in an insect. Proc. Natl. Acad. Sci. U.S.A. 103, 14045-14049.   DOI
3 Simpson, S.J., Raubenheimer, D., 2005. Obesity: the protein leverage hypothesis. Obes. Rev. 6, 133-142.   DOI
4 Holmes, A.J., Chew, Y.V., Colakoglu, F., Cliff, J.B., Klaassens, E., Read, M.N., Solon-Biet, S.M., McMahon, A.C., Cogger, V.C., Ruohonen, K., Raubenheimer, D., Le Couteur, D.G., Simpson, S.J., 2017. Diet-microbiome interactions in health are controlled by intestinal nitrogen source constraints. Cell Metab. 25, 140-151.   DOI
5 Jensen, K., Kristensen, T., Heckmann, L.-H., Sorensen, J., 2017. Breeding and maintaining high-quality insects, in: van Huis, A., Tomberlin, J.K. (Eds.), Insects as food and feed: from production to consumption. Wageningen Academic Publishers, Wageningen, pp. 175-198.
6 Kirkwood, T.B.L., 2005. Understanding the odd science of aging. Cell 120, 437-447.   DOI
7 Bowman, E., Tatar, M., 2016. Reproduction regulates Drosophila nutrient intake through independent effects of egg production and sex peptide: implications for aging. Nutr. Healthy Aging. 4, 55-61.   DOI
8 Fanson, B.G., Taylor, P.W., 2012. Protein:carbohydrate ratios explain life span patterns found in Queensland fruit fly on diets varying in yeast:sugar ratios. Age 34, 1361-1368.   DOI
9 Fanson, B.G., Weldon, C.W., Perez-Staples, D., Simpson, S.J., Taylor, P.W., 2009. Nutrients, not caloric restriction, extend lifespan in Queensland fruit flies (Bactrocera tryoni). Aging Cell 8, 514-523.   DOI
10 Alton, L.A., Kutz, T.C., Bywater, C.L., Beaman, J.E., Arnold, P.A., Mirth, C.K., Sgro, C.M., White, C.R., 2020. Developmental nutrition modulates metabolic responses to projected climate change. Funct. Ecol. 34, 2488-2502.   DOI
11 Lihoreau, M., Buhl, J., Charleston, M.A., Sword, G.A., Raubenheimer, D., Simpson, S.J., 2014. Modelling nutrition across organizational levels: from individuals to superorganisms. J. Insect Physiol. 69, 2-11.   DOI
12 Le Couteur, D.G., Solon-Biet, S., Cogger, V.C., Mitchell, S.J., Senior, A., de Cabo, R., Raubenheimer, D., Simpson, S.J., 2016. The impact of low-protein high-carbohydrate diets on aging and lifespan. Cell. Mol. Life Sci. 73, 1237-1252.   DOI
13 Lee, K.P., Behmer, S.T., Simpson, S.J., 2006a. Nutrient regulation in relation to diet breadth: a comparison of Heliothis sister species and a hybrid. J. Exp. Biol. 209, 2076-2084.   DOI
14 Lee, K.P., Jang, T., Ravzanaadii, N., Rho, M.S., 2015. Macronutrient balance modulates the temperature-size rule in an ectotherm. Am. Nat. 186, 212-222.   DOI
15 Lee, K.P., Simpson, S.J., Clissold, F.J., Brooks, R., Ballard, J.W.O., Taylor, P.W., Soran, N., Raubenheimer, D., 2008. Lifespan and reproduction in Drosophila: new insights from nutritional geometry. Proc. Nat. Acad. Sci. U.S.A. 105, 2498-2503.   DOI
16 Lee, K.P., Behmer, S.T., Simpson, S.J., Raubenheimer, D., 2002. A geometric analysis of nutrient regulation in the generalist caterpillar Spodoptera littoralis (Boisduval). J. Insect Physiol. 48, 655-665.   DOI
17 Lee, K.P., Cory, J.S., Wilson, K., Raubenheimer, D., Simpson, S.J., 2006b. Flexible diet choice offsets protein costs of pathogen resistance in a caterpillar. Proc. Royal Soc. B 273, 823-829.   DOI
18 Lee, K.P., Kwon, S.-T., Roh, C., 2012. Caterpillars use developmental plasticity and diet choice to overcome the early life experience of nutritional imbalance. Anim. Behav. 84, 785-793.   DOI
19 Leulier, F., MacNeil, L.T., Lee, W., Rawls, J.F., Cani, P.D., Schwarzer, M., Zhao, L., Simpson, S.J., 2017. Integrative physiology: at the crossroads of nutrition, microbiota, animal physiology, and human health. Cell Metab. 25, 522-534.   DOI
20 Mair, W., Piper, M.D.W., Partridge, L., 2005. Calories do not explain extension of life span by dietary restriction in Drosophila. PLoS Biol. 3, e223.   DOI
21 Gosby, A.K., Conigrave, A.D., Raubenheimer, D., Simpson, S.J., 2014. Protein leverage and energy intake. Obes. Rev. 15, 183-191.   DOI
22 Raubenheimer, D., Simpson, S.J., Tait, A.H., 2012. Match and mismatch: conservation physiology, nutritional ecology and the timescales of biological adaptation. Philos. Trans. R. Soc. Lond. B Biol. Sci. 367, 1628-1646.   DOI
23 Rho, M.S., Lee, K.P., 2014. Geometric analysis of nutrient balancing in the mealworm beetle, Tenebrio molitor L. (Coleoptera: Tenebrionidae). J. Insect Physiol. 71, 37-45.   DOI
24 Harrison, J.F., Woods, H.A., Roberts, S.P., 2012. Ecological and environmental physiology of insects, Oxford University Press, Oxford.
25 Slansky, F., 1993. Nutritional ecology: the fundamental quest for nutrients, in: Stamp, N.E., Casey, T.M. (Eds.), Caterpillars: ecological and evolutionary constraints on foraging. Chapman & Hall, New York, pp. 29-91.
26 Lihoreau, M., Buhl, J., Charleston, M.A., Sword, G.A., Raubenheimer, D., Simpson, S.J., 2015. Nutritional ecology beyond the individual: a conceptual framework for integrating nutrition and social interactions. Ecol. Lett. 18, 273-286.   DOI
27 Maklakov, A.A., Simpson, S.J., Zajitschek, F., Hall, M.D., Dessmann, J., Clissold, F., Raubenheimer, D., Bonduriansky, R., Brooks, R.C., 2008. Sex-specific fitness effects of nutrient intake on reproduction and lifespan. Curr. Biol. 18, 1062-1066.   DOI
28 Flatt, T., Heyland, A., 2011. Mechanisms of life history evolution: the genetics and physiology of life history traits and trade-offs, Oxford University Press, Oxford.
29 Gray, L.J., Simpson, S.J., Polak, M., 2018. Fruit flies may face a nutrient-dependent life-history trade-off between secondary sexual trait quality, survival and developmental rate. J. Insect Physiol. 104, 60-70.   DOI
30 Mayntz, D., Raubenheimer, D., Salomon, M., Toft, S., Simpson, S.J., 2005. Nutrient-specific foraging in invertebrate predators. Science 307, 111-113.   DOI
31 Moatt, J.P., Fyfe, M.A., Heap, E., Mitchell, L.J.M., Moon, F., Walling, C.A., 2019. Reconciling nutritional geometry with classical dietary restriction: effects of nutrient intake, not calories, on survival and reproduction. Aging Cell 18, e12868.   DOI
32 Moatt, J.P., Savola, E., Regan, J.C., Nussey, D.H., Walling, C.A., 2020. Lifespan extension via dietary restriction: time to reconsider the evolutionary mechanisms? BioEssays 42, 1900241.   DOI
33 Morimoto, J., Lihoreau, M., 2019. Quantifying nutritional trade-offs across multidimensional performance landscapes. Am. Nat. 193, E168-E181.   DOI
34 Nagarajan-Radha, V., Rapkin, J., Hunt, J., Dowling, D.K., 2019. Interactions between mitochondrial haplotype and dietary macronutrient ratios confer sex-specific effects on longevity in Drosophila melanogaster. Gerontol. A Biol. Sci. Med. Sci. 74, 1573-1581.   DOI
35 Nakagawa, S., Lagisz, M., Hector, K.L., Spencer, H.G., 2012. Comparative and meta-analytic insights into life extension via dietary restriction. Aging Cell 11, 401-409.   DOI
36 Machovsky-Capuska, G.E., Senior, A.M., Simpson, S.J., Raubenheimer, D., 2016. The multidimensional nutritional niche. Trends Ecol. Evol. 31, 355-365.   DOI
37 Cotter, S.C., Simpson, S.J., Raubenheimer, D., Wilson, K., 2011. Macronutrient balance mediates trade-offs between immune function and life history traits. Funct. Ecol. 25, 186-198.   DOI
38 Bruce, K.D., Hoxha, S., Carvalho, G.B., Yamada, R., Wang, H.D., Karayan, P., He, S., Brummel, T., Kapahi, P., Ja, W.W., 2013. High carbohydrate-low protein consumption maximizes Drosophila lifespan. Exp. Gerontol. 48, 1129-1135.   DOI
39 Jensen, K., McClure, C., Priest, N.K., Hunt, J., 2015. Sex-specific effects of protein and carbohydrate intake on reproduction but not lifespan in Drosophila melanogaster. Aging Cell 14, 605-615.   DOI
40 Kapahi, P., Chen, D., Rogers, A.N., Katewa, S.D., Li, P.W., Thomas, E.L., Kockel, L., 2010. With TOR, less is more: a key role for the conserved nutrient-sensing TOR pathway in aging. Cell Metab. 11, 453-465.   DOI
41 Roff, D.A., 2002. Life history evolution, Oxford University Press, Oxford.
42 Gullan, P.J., Cranston, P.S., 2014. The insects: an outline of entomology, John Wiley & Sons, New York.
43 Camus, M.F., Fowler, K., Piper, M.W.D., Reuter, M., 2017. Sex and genotype effects on nutrient-dependent fitness landscapes in Drosophila melanogaster. Proc. Royal Soc. B 284, 20172237.   DOI
44 Sanz, A., Caro, P., Barja, G., 2004. Protein restriction without strong caloric restriction decreases mitochondrial oxygen radical production and oxidative DNA damage in rat liver. J. Bioenerg. Biomembr. 36, 545-552.   DOI
45 Simpson, S.J., Sibly, R.M., Lee, K.P., Behmer, S.T., Raubenheimer, D., 2004. Optimal foraging when regulating intake of multiple nutrients. Anim. Behav. 68, 1299-1311.   DOI
46 Rho, M.S., Lee, K.P., 2015. Nutrient-specific food selection buffers the effect of nutritional imbalance in the mealworm beetle, Tenebrio molitor (Coleoptera: Tenebrionidae). Eur. J. Entomol. 112, 251-258.   DOI
47 Rho, M.S., Lee, K.P., 2016. Balanced intake of protein and carbohydrate maximizes lifetime reproductive success in the mealworm beetle, Tenebrio molitor (Coleoptera: Tenebrionidae). J. Insect Physiol. 91, 93-99.   DOI
48 Rho, M.S., Lee, K.P., 2017. Temperature-driven plasticity in nutrient use and preference in an ectotherm. Oecologia 185, 401-413.   DOI
49 Rho, M.S., Lee, K.P., 2022. Behavioural and physiological regulation of protein and carbohydrates in mealworm larvae: a geometric analysis. J. Insect Physiol. 136, 104329.   DOI
50 Rodrigues, M.A., Martins, N.E., Balance, L.F., Broom, L.N., Dias, A.J.S., Fernandes, A.S.D., Rodrigues, F., Sucena, E., Mirth, C.K., 2015. Drosophila melanogaster larvae make nutritional choices that minimize developmental time. J. Insect Physiol. 81, 69-80.   DOI
51 Kim, K., Jang, T., Min, K.-J., Lee, K.P., 2020. Effects of dietary protein:carbohydrate balance on life-history traits in six laboratory strains of Drosophila melanogaster. Entomol. Exp. Appl. 168, 482-491.   DOI
52 Hawlena, D., Schmitz, O.J., 2010. Herbivore physiological response to predation risk and implications for ecosystem nutrient dynamics. Proc. Natl. Acad. Sci. U.S.A. 107, 15503-15507.   DOI
53 Jang, T., Lee, K.P., 2018. Comparing the impacts of macronutrients on life-history traits in larval and adult Drosophila melanogaster: the use of nutritional geometry and chemically defined diets. J. Exp. Biol. 221, jeb181115.   DOI
54 Jensen, K., Mayntz, D., Toft, S., Clissold, F.J., Hunt, J., Raubenheimer, D., Simpson, S.J., 2012. Optimal foraging for specific nutrients in predatory beetles. Proc. Royal Soc. B 279, 2212-2218.   DOI
55 Camus, M.F., Huang, C.C., Reuter, M., Fowler, K., 2018. Dietary choices are influenced by genotype, mating status, and sex in Drosophila melanogaster. Ecol. Evol. 8, 5385-5393.   DOI
56 Ruohonen, K., Simpson, S.J., Raubenheimer, D., 2007. A new approach to diet optimisation: a re-analysis using European whitefish (Coregonus lavaretus). Aquaculture 267, 147-156.   DOI
57 Schmitz, O.J., Rosenblatt, A.E., Smylie, M., 2016. Temperature dependence of predation stress and the nutritional ecology of a generalist herbivore. Ecology 97, 3119-3130.   DOI
58 Scriber, J.M., Slansky, F., 1981. The nutritional ecology of immature insects. Annu. Rev. Entomol. 26, 183-211.   DOI
59 Cavigliasso, F., Dupuis, C., Savary, L., Spangenberg, J.E., Kawecki, T.J., 2020. Experimental evolution of post-ingestive nutritional compensation in response to a nutrient-poor diet. Proc. Royal Soc. B 287, 20202684.   DOI
60 Chapman, R.F., 2013. The insects: structure and function, 5th ed., Cambridge University Press, Cambridge.
61 Stearns, S.C., 1989. Trade-offs in life-history evolution. Funct. Ecol. 3, 259-268.   DOI
62 Chown, S.L., Nicolson, S.W., 2004. Insect physiological ecology: mechanisms and patterns, Oxford University Press, Oxford.
63 Dussutour, A., Latty, T., Beekman, M., Simpson, S.J., 2010. Amoeboid organism solves complex nutritional challenges. Proc. Natl. Acad. Sci. U.S.A. 107, 4607-4611.   DOI
64 Solon-Biet, S.M., McMahon, A.C., Ballard, J.W.O., Ruohonen, K., Wu, L.E., Cogger, V.C., Warren, A., Huang, X., Pichaud, N., Melvin, R.G., Gokarn, R., Khalil, M., Turner, N., Cooney, G.J., Sinclair, D.A., Raubenheimer, D., Le Couteur, D.G., Simpson, S.J., 2014. The ratio of macronutrients, not caloric intake, dictates cardiometabolic health, aging, and longevity in ad libitum-fed mice. Cell Metab. 19, 418-430.   DOI
65 Stearns, S.C., 1992. The evolution of life histories, Oxford University Press, Oxford.
66 Tatar, M., Post, S., Yu, K., 2014. Nutrient control of Drosophila longevity. Trends Endocrinol. Metab. 25, 509-517.   DOI
67 van Huis, A., 2020. Insects as food and feed, a new emerging agricultural sector: a review. J. Insects Food Feed 6, 27-44.   DOI
68 Shikano, I., Cory, J.S., 2016. Altered nutrient intake by baculovirus-challenged insects: self-medication or compensatory feeding? J. Invertebr. Pathol. 139, 25-33.   DOI
69 Semaniuk, U., Feden'ko, K., Yurkevych, I.S., Storey, K.B., Simpson, S.J., Lushchak, O., 2018. Within-diet variation in rates of macronutrient consumption and reproduction does not accompany changes in lifespan in Drosophila melanogaster. Entomol. Exp. Appl. 166, 74-80.   DOI
70 Shik, J.Z., Kooij, P.W., Donoso, D.A., Santos, J.C., Gomez, E.B., Franco, M., Crumiere, A.J.J., Arnan, X., Howe, J., Wcislo, W.T., Boomsma, J.J., 2021. Nutritional niches reveal fundamental domestication trade-offs in fungus-farming ants. Nat. Ecol. Evol. 5, 122-134.   DOI
71 Paoli, P.P., Donley, D., Stabler, D., Saseendranath, A., Nicolson, S.W., Simpson, S.J., Wright, G.A., 2014. Nutritional balance of essential amino acids and carbohydrates of the adult worker honeybee depends on age. Amino Acids 46, 1449-1458.   DOI
72 Koemel, N.A., Senior, A.M., Dissanayake, H.U., Ross, J., McMullan, R.L., Kong, Y., Phang, M., Hyett, J., Raubenheimer, D., Gordon, A., Simpson, S.J., Skilton, M.R., 2022. Maternal dietary fatty acid composition and newborn epigenetic aging - a geometric framework approach. Am. J. Clin. Nutr. 115, 118-127.   DOI
73 Kutz, T.C., Sgro, C.M., Mirth, C.K., 2019. Interacting with change: diet mediates how larvae respond to their thermal environment. Funct. Ecol. 33, 1940-1951.   DOI
74 Lee, K.P., 2010. Sex-specific differences in nutrient regulation in a capital breeding caterpillar, Spodoptera litura (Fabricius). J. Insect Physiol. 56, 1685-1695.   DOI
75 Matavelli, C., Carvalho, M.J.A., Martins, N.E., Mirth, C.K., 2015. Differences in larval nutritional requirements and female oviposition preference reflect the order of fruit colonization of Zaprionus indianus and Drosophila simulans. J. Insect Physiol. 82, 66-74.   DOI
76 Wheeler, D., 1996. The role of nourishment in oogenesis. Annu. Rev. Entomol. 41, 407-431.   DOI
77 Waldbauer, G.P., Friedman, S., 1991. Self-selection of optimal diets by insects. Annu. Rev. Entomol. 36, 43-63.   DOI
78 Oonincx, D.G.A.B., 2017. Environmental impact of insect production, in: van Huis, A., Tomberlin, J.K. (Eds.), Insects as food and feed: from production to consumption. Wageningen Academic Publishers, Wageningen, pp. 79-93.
79 Lee, K.P., Kim, J.-S., Min, K.-J., 2013. Sexual dimorphism in nutrient intake and life span is mediated by mating in Drosophila melanogaster. Anim. Behav. 86, 987-992.   DOI
80 Shingleton, A.W., Masandika, J.R., Thorsen, L.S., Zhu, Y., Mirth, C.K., 2017. The sex-specific effects of diet quality versus quantity on morphology in Drosophila melanogaster. R. Soc. Open Sci. 4, 170375.   DOI
81 Piper, M.D.W., Partridge, L., Raubenheimer, D., Simpson, S.J., 2011. Dietary restriction and aging: a unifying perspective. Cell Metab. 14, 154-160.   DOI
82 Piper, M.D.W., Soultoukis, G.A., Blanc, E., Mesaros, A., Herbert, S.L., Juricic, P., He, X., Atanassov, I., Salmonowicz, H., Yang, M., Simpson, S.J., Ribeiro, C., Partridge, L., 2017. Matching dietary amino acid balance to the in silico-translated exome optimizes growth and reproduction without cost to lifespan. Cell Metab. 25, 610-621.   DOI
83 Polak, M., Simmons, L.W., Benoit, J.B., Ruohonen, K., Simpson, S.J., Solon-Biet, S.M., 2017. Nutritional geometry of paternal effects on embryo mortality. Proc. Royal Soc. B 284, 20171492.   DOI
84 Simpson, S.J., Raubenheimer, D., 2009. Macronutrient balance and lifespan. Aging 1, 875-880.   DOI
85 Flatt, T., 2011. Survival costs of reproduction in Drosophila. Exp. Gerontol. 46, 369-375.   DOI
86 Raubenheimer, D., Simpson, S.J., Mayntz, D., 2009. Nutrition, ecology and nutritional ecology: toward an integrated framework. Funct. Ecol. 23, 4-16.   DOI
87 Silva-Soares, N.F., Nogueira-Alves, A., Beldade, P., Mirth, C.K., 2017. Adaptation to new nutritional environments: larval performance, foraging decisions, and adult oviposition choices in Drosophila suzukii. BMC Ecol. 17, 1-13.   DOI
88 Simpson, S.J., Clissold, F.J., Lihoreau, M., Ponton, F., Wilder, S.M., Raubenheimer, D., 2015a. Recent advances in the integrative nutrition of arthropods. Annu. Rev. Entomol. 60, 293-311.   DOI
89 Simpson, S.J., Le Couteur, D.G., Raubenheimer, D., 2015b. Putting the balance back in diet. Cell 161, 18-23.   DOI
90 Simpson, S.J., Raubenheimer, D., 1993. A multi-level analysis of feeding behaviour: the geometry of nutritional decisions. Philos. Trans. R. Soc. Lond. B Biol. Sci. 342, 381-402.   DOI
91 Skorupa, D.A., Dervisefendic, A., Zwiener, J., Pletcher, S.D., 2008. Dietary composition specifies consumption, obesity, and lifespan in Drosophila melanogaster. Aging Cell 7, 478-490.   DOI
92 Simpson, S.J., Simpson, C.L., 1990. The mechanisms of nutritional compensation by phytophagous insects, in: Bernays, E.A. (Ed.), Insect-plant Interactions. CRC Press, New York, pp. 112-160.
93 Partridge, L., Gems, D., Withers, D.J., 2005. Sex and death: what is the connection? Cell 120, 461-472.   DOI
94 Jensen, K., Mayntz, D., Toft, S., Raubenheimer, D., Simpson, S.J., 2011. Nutrient regulation in a predator, the wolf spider Pardosa prativaga. Anim. Behav. 81, 993-999.   DOI
95 Harrison, S.J., Raubenheimer, D., Simpson, S.J., Godin, J.-G.J., Bertram, S.M., 2014. Towards a synthesis of frameworks in nutritional ecology: interacting effects of protein, carbohydrate and phosphorus on field cricket fitness. Proc. Royal Soc. B 281, 20140539.   DOI
96 Abisgold, J.D., Simpson, S.J., Douglas, A.E., 1994. Nutrient regulation in the pea aphid Acyrthosiphon pisum: application of a novel geometric framework to sugar and amino acid consumption. Physiol. Entomol. 19, 95-102.   DOI
97 Simpson, S.J., Raubenheimer, D., 2012. The nature of nutrition: a unifying framework from animal adaptation to human obesity. Princeton University Press, Princeton.
98 Al Shareefi, E., Cotter, S.C., 2019. The nutritional ecology of maturation in a carnivorous insect. Behav. Ecol. 30, 256-266.   DOI
99 Behmer, S.T., 2009. Insect herbivore nutrient regulation. Annu. Rev. Entomol. 54, 165-187.   DOI
100 Behmer, S.T., Joern, A., 2008. Coexisting generalist herbivores occupy unique nutritional feeding niches. Proc. Natl. Acad. Sci. U.S.A. 105, 1977-1982.   DOI
101 Simpson, S.J., Le Couteur, D.G., James, D.E., George, J., Gunton, J.E., Solon-Biet, S.M., Raubenheimer, D., 2017. The geometric framework for nutrition as a tool in precision medicine. Nutr. Healthy Aging 4, 217-226.   DOI
102 Min, K.-J., Tatar, M., 2006. Restriction of amino acids extends lifespan in Drosophila melanogaster. Mech. Ageing Dev. 127, 643-646.   DOI
103 Masoro, E.J., 2005. Overview of caloric restriction and ageing. Mech. Ageing Dev. 126, 913-922.   DOI
104 Mattson, W.J., 1980. Herbivory in relation to plant nitrogen content. Annu. Rev. Ecol. Syst. 11, 119-161.   DOI
105 Mayntz, D., Nielsen, V.H., Sorensen, A., Toft, S., Raubenheimer, D., Hejlesen, C., Simpson, S.J., 2009. Balancing of protein and lipid intake by a mammalian carnivore, the mink, Mustela vison. Anim. Behav. 77, 349-355.   DOI
106 Mirth, C.K., Nogueira Alves, A., Piper, M.D., 2019. Turning food into eggs: insights from nutritional biology and developmental physiology of Drosophila. Curr. Opin. Insect Sci. 31, 49-57.   DOI
107 Sinclair, D.A., 2005. Toward a unified theory of caloric restriction and longevity regulation. Mech. Ageing Dev. 126, 987-1002.   DOI
108 van Huis, A., 2013. Potential of insects as food and feed in assuring food security. Annu. Rev. Entomol. 58, 563-583.   DOI
109 Bonduriansky, R., Runagall-McNaull, A., Crean, A.J., 2016. The nutritional geometry of parental effects: maternal and paternal macronutrient consumption and offspring phenotype in a neriid fly. Funct. Ecol. 30, 1675-1686.   DOI
110 Lee, K.P., 2015. Dietary protein:carbohydrate balance is a critical modulator of lifespan and reproduction in Drosophila melanogaster: a test using a chemically defined diet. J. Insect Physiol. 75, 12-19.   DOI
111 Povey, S., Cotter, S.C., Simpson, S.J., Lee, K.P., Wilson, K., 2009. Can the protein costs of bacterial resistance be offset by altered feeding behaviour? J. Anim. Ecol. 78, 437-446.   DOI
112 Rapkin, J., Jensen, K., Archer, C.R., House, C.M., Sakaluk, S.K., Castillo, E. del, Hunt, J., 2018. The geometry of nutrient space-based life-history trade-offs: sex-specific effects of macronutrient intake on the trade-off between encapsulation ability and reproductive effort in decorated crickets. Am. Nat. 191, 452-474.   DOI
113 Raubenheimer, D., Jones, S.A., 2006. Nutritional imbalance in an extreme generalist omnivore: tolerance and recovery through complementary food selection. Anim. Behav. 71, 1253-1262.   DOI
114 Raubenheimer, D., Mayntz, D., Simpson, S.J., Toft, S., 2007. Nutrient-specific compensation following diapause in a predator: implications for intraguild predation. Ecology 88, 2598-2608.   DOI
115 Raubenheimer, D., Simpson, S.J., 1999. Integrating nutrition: a geometrical approach, in: Simpson, S.J., Mordue, A.J., Hardie, J. (Eds.), Proceedings of the 10th international symposium on insect-plant relationships. Springer Science and Business Media, Dordrecht, pp. 67-82.
116 Raubenheimer, D., Simpson, S.J., 2003. Nutrient balancing in grasshoppers: behavioural and physiological correlates of dietary breadth. J. Exp. Biol. 206, 1669-1681.   DOI
117 Raubenheimer, D., Simpson, S.J., 2016. Nutritional ecology and human health. Annu. Rev. Nutr. 36, 603-626.   DOI
118 Rosenblatt, A.E., Schmitz, O.J., 2016. Climate change, nutrition, and bottom-up and top-down food web processes. Trends Ecol. Evol. 31, 965-975.   DOI
119 Solon-Biet, S.M., Cogger, V.C., Pulpitel, T., Wahl, D., Clark, X., Bagley, E.E., Gregoriou, G.C., Senior, A.M., Wang, Q.-P., Brandon, A.E., Perks, R., O'Sullivan, J., Koay, Y.C., Bell-Anderson, K., Kebede, M., Yau, B., Atkinson, C., Svineng, G., Dodgson, T., Wali, J.A., Piper, M.D.W., Juricic, P., Partridge, L., Rose, A.J., Raubenheimer, D., Cooney, G.J., Le Couteur, D.G., Simpson, S.J., 2019. Branched-chain amino acids impact health and lifespan indirectly via amino acid balance and appetite control. Nat. Metab. 1, 532-545.   DOI
120 Solon-Biet, S.M., Mitchell, S.J., Coogan, S.C.P., Cogger, V.C., Gokarn, R., McMahon, A.C., Raubenheimer, D., de Cabo, R., Simpson, S.J., Le Couteur, D.G., 2015. Dietary protein to carbohydrate ratio and caloric restriction: comparing metabolic outcomes in mice. Cell Rep. 11, 1529-1534.   DOI
121 Reddiex, A.J., Gosden, T.P., Bonduriansky, R., Chenoweth, S.F., 2013. Sex-specific fitness consequences of nutrient intake and the evolvability of diet preferences. Am. Nat. 182, 91-102.   DOI
122 Cheon, D.A., Jang, T., Lee, K.P., 2022. Visualising the nutritional performance landscapes for the black soldier fly, Hermetia illucens (Diptera: Stratiomyidae). J. Insects Food Feed in press.
123 Lee, K.P., Raubenheimer, D., Behmer, S.T., Simpson, S.J., 2003. A correlation between macronutrient balancing and insect host-plant range: evidence from the specialist caterpillar Spodoptera exempta (Walker). J. Insect Physiol. 49, 1161-1171.   DOI