DOI QR코드

DOI QR Code

Neuronal Mechanisms that Regulate Vitellogenesis in the Fruit Fly

노랑초파리 난황형성과정 제어 신경 메커니즘

  • Kim, Young-Joon (School of Life Sciences, Gwangju Institute of Science and Technology (GIST)) ;
  • Zhang, Chen (School of Life Sciences, Gwangju Institute of Science and Technology (GIST))
  • 김영준 (광주과학기술원 생명과학부) ;
  • 장진 (광주과학기술원 생명과학부)
  • Received : 2022.01.11
  • Accepted : 2022.02.20
  • Published : 2022.03.01

Abstract

Vitellogenesis is the process by which yolk accumulates in developing oocytes. The initiation of vitellogenesis represents an important control point in oogenesis. When females of the model insect Drosophila melanogaster molt to become adults, their ovaries lack mature vitellogenic oocytes, only producing them after reproductive maturation. After maturation, vitellogenesis stops until a mating signal re-activates it. Juvenile hormone (JH) from the endocrine organ known as the corpora allata (CA) is the major insect gonadotropin that stimulates vitellogenesis, and the seminal protein sex peptide (SP) has long been implicated as a mating signal that stimulates JH biosynthesis. In this review, we discuss our new findings that explain how the nervous system gates JH biosynthesis and vitellogenesis associated with reproductive maturation and the SP-induced post-mating response. Mated females exhibit diurnal rhythmicity in oogenesis. A subset of brain circadian pacemaker neurons produce Allatostatin C (AstC) to generate a circadian oogenesis rhythm by indirectly regulating JH and vitellogenesis through the brain insulin-producing cells. We also discuss genetic evidence that supports this model and future research directions.

난황형성과정(Vitellogenesis)은 발달하는 난모세포에 난황이 축적되는 과정으로, 이 과정의 개시는 알형성과정(oogenesis)을 제어하는 주요 메커니즘이다. 곤충생리학 모델인 노랑초파리(Drosophila melanogaster)에서 난황형성과정은 성충으로 우화한 직후 시작하여 성적 성숙이 일어나는 2-3일간 지속된다. 성숙한 난모세포가 충분히 만들어지고 성적 성숙이 종료되면, 짝짓기 후 알형성과정이 다시 시작될 때까지 난황형성과정은 멈춘다. 수컷 초파리의 정액 단백질인 성 펩타이드(Sex peptide, SP)는 짝짓기의 신호로서 알라타체(corpora allata)를 자극해 유약호르몬(Juvenile hormone, JH) 생합성 및 분비를 유도하며, 혈림프(hemolymph) JH 농도의 증가는 난황형성과정을 자극한다. 최근 연구 결과에 따르면, SP수용체 뉴런은 자궁 내막의 수상돌기를 통해 교미 중 정액과 함께 자궁으로 전달된 SP를 감지함으로써, 축삭돌기를 통해 중추신경계인 복부 신경절에 짝짓기 신호를 보내는데, 이러한 중추신경계 SP 신호가 JH 생합성 및 분비, 그리고 난황형성과정을 유도하는 것으로 밝혀졌다. 짝짓기 후 암컷에서의 난황형성과정은 일주기 리듬을 보이는데, 노랑초파리의 일주기 리듬은 중추 신경계 뉴런들에 의해 제어된다. 본 종설은 성적 성숙, 짝짓기 신호, 그리고 일주기 리듬에 따라 난황형성과정을 제어하는 신경 메커니즘에 관한 최근 연구 성과를 다룬다.

Keywords

Acknowledgement

This work was supported a National Research Foundation of Korea (NRF) grant to Y.-J.K.; NRF-2015K2A1B8046794.

References

  1. Allemand, R., 1976a. Les rythmes de vitellogenese et d'ovulation en photoperiode LD 12:12 de Drosophila melanogaster. J. Insect Physiol. 22,1031-1035. https://doi.org/10.1016/0022-1910(76)90088-3
  2. Allemand, R., 1976b. Influence de modifications des conditions des conditions lumineuses sur les ruthmes circadiens de vitellogenesis et d'ovulation chez Drosophila melanogaster. J. Insect Physio. 22,1075-1080. https://doi.org/10.1016/0022-1910(76)90116-5
  3. Ameku, T., Niwa, R., 2016. Mating-induced increase in germline stem cells via the neuroendocrine system in female Drosophila. PLoS Genet. 12, e1006123. https://doi.org/10.1371/journal.pgen.1006123
  4. Areiza, M., Nouzova, M., Rivera-Perez, C., Noriega, F.G., 2014. Ecdysis triggering hormone ensures proper timing of juvenile hormone biosynthesis in pharate adult mosquitoes. Insect Biochem. Mol. Biol. 54, 98-105. https://doi.org/10.1016/j.ibmb.2014.09.006
  5. Baker, F.C., Tsai, L.W., Reuter, C.C., Schooley, D.A., 1987. In vivo fluctuation of JH, JH acid, and ecdysteroid titer, and JH esterase activity, during development of fifth stadium Manduca sexta. Insect Biochem. 17, 989-996. https://doi.org/10.1016/0020-1790(87)90108-9
  6. Boucher, J., Kleinridders, A., Kahn, C.R., 2014. Insulin receptor signaling in normal and Insulin resistant states. Cold Spring Harb. Perspect. Biol. 6, a009191. https://doi.org/10.1101/cshperspect.a009191
  7. Bownes, M., Rembold, H., 1987. The titre of juvenile hormone during the pupal and adult stages of the life cycle of Drosophila melanogaster. Eur. J. Biochem. 164, 709-712. https://doi.org/10.1111/j.1432-1033.1987.tb11184.x
  8. Chapman, T., Bangham, J., Vinti, G., Seifried, B., Lung, O., Wolfner, M.F., Smith, H.K., Partridge, L., 2003. The sex peptide of Drosophila melanogaster: Female post-mating responses analyzed by using RNA interference. Proc. Natl. Acad. Sci. U. S. A. 100, 9923-9928. https://doi.org/10.1073/pnas.1631635100
  9. Chen, P.S., Stumm-Zollinger, E., Aigaki, T., Balmer, J., Bienz, M., Bohlen, P., 1988. A male accessory gland peptide that regulates reproductive behavior of female D. melanogaster. Cell 54, 291-298. https://doi.org/10.1016/0092-8674(88)90192-4
  10. Daubnerova, I., Roller, L., Satake, H., Zhang, C., Kim, Y.J., Zitnan, D., 2021. Identification and function of ETH receptor networks in the silkworm Bombyx mori. Sci. Rep. 11, 1-23. https://doi.org/10.1038/s41598-020-79139-8
  11. Feng, K., Palfreyman, M.T., Hasemeyer, M., Talsma, A., Dickson, B.J., 2014. Ascending SAG neurons control sexual receptivity of Drosophila females. Neuron 83, 135-148. https://doi.org/10.1016/j.neuron.2014.05.017
  12. Hasemeyer, M., Yapici, N., Heberlein, U., Dickson, B.J., 2009. Sensory neurons in the Drosophila genital tract regulate female reproductive behavior. Neuron 61, 511-518. https://doi.org/10.1016/j.neuron.2009.01.009
  13. Ikeya, T., Galic, M., Belawat, P., Nairz, K., Hafen, E., 2002. Nutrient-dependent expression of insulin-like peptides from neuroendocrine cells in the CNS contributes to growth regulation in Drosophila. Curr. Biol. 12, 1293-1300. https://doi.org/10.1016/S0960-9822(02)01043-6
  14. Iversen, A., Cazzamali, G., Williamson, M., Hauser, F., Grimmelikhuijzen, C.J.P., 2002. Molecular identification of the first insect ecdysis triggering hormone receptors. Biochem. Biophys. Res. Commun. 299, 924-931. https://doi.org/10.1016/S0006-291X(02)02798-5
  15. Jang, Y.H., Chae, H.S., Kim, Y.J., 2017. Female-specific myoinhibitory peptide neurons regulate mating receptivity in Drosophila melanogaster. Nat. Commun. 8, 1-12. https://doi.org/10.1038/s41467-016-0009-6
  16. Jia, D., Xu, Q., Xie, Q., Mio, W., Deng, W.M., 2016. Automatic stage identification of Drosophila egg chamber based on DAPI images. Sci. Rep. 6, 1-12. https://doi.org/10.1038/s41598-016-0001-8
  17. Jowett, T., Postlethwait, J.H., 1980. The regulation of yolk polypeptide synthesis in Drosophila ovaries and fat body by 20- hydroxyecdysone and a juvenile hormone analog. Dev. Biol. 80, 225-234. https://doi.org/10.1016/0012-1606(80)90510-2
  18. Kim, Y.J., Zitnan, D., Cho, K.H., Schooley, D.A., Misoguchi, A., Adams, M.E., 2006a. Central peptidergic ensembles associated with organization of an innate behavior. Proc. Natl. Acad. Sci. U. S. A. 103, 14211-14216. https://doi.org/10.1073/pnas.0603459103
  19. Kim, Y.J., Zitnan, D., Galizia, C.G., Cho, K.H., Adams, M.E., 2006b. A Command chemical triggers an innate behavior by sequential activation of multiple peptidergic ensembles. Curr. Biol. 16, 1395-1407. https://doi.org/10.1016/j.cub.2006.06.027
  20. Kramer, S.J., Toschi, A., Miller, C.A., Kataoka, H., Quistad, G.B., Li, J.P., Carney, R.L., Schooley, D.A., 1991. Identification of an allatostatin from the tobacco hornworm Manduca sexta. Proc. Natl. Acad. Sci. U. S. A. 88, 9458-9462. https://doi.org/10.1073/pnas.88.21.9458
  21. LaFever, L., Drummond-Barbosa, D., 2005. Direct control of germline stem cell division and cyst growth by neural insulin in Drosophila. Science 309, 1071-1073. https://doi.org/10.1126/science.1111410
  22. Meiselman, M., Lee, S.S., Tran, R.T., Dai, H., Ding, Y., Rivera-Perez, C., Wijesekera, T.P., Dauwalder, B., Noriega, F.G., Adams, M.E., 2017. Endocrine network essential for reproductive success in Drosophila melanogaster. Proc. Natl. Acad. Sci. U. S. A. 114, E3849-E3858.
  23. Moshitzky, P., Fleischmann, I., Chaimov, N., Saudan, P., Klauser, S., Kubli, E., Applebaum, S.W., 1996. Sex-peptide Activates juvenile hormone biosynthesis in the Drosophila melanogaster corpus allatum. Arch. Insect Biochem. Physiol. 32, 363-374. https://doi.org/10.1002/(SICI)1520-6327(1996)32:3/4<363::AID-ARCH9>3.0.CO;2-T
  24. Nagy, D., Cusumano, P., Andreatta, G., Anduaga, A.M., Hermann-Luibl, C., Reinhard, N., Gesto, J., Wegener, C., Mazzotta, G., Rosato, E., Kyriacou, C.P., Helfrich-Forster, C., Costa, R., 2019. Peptidergic signaling from clock neurons regulates reproductive dormancy in Drosophila melanogaster. PLoS Genet. 15, 1-25.
  25. Niimi, S., Sakurai, S., 1997. Development changes in juvenile hormone and juvenile hormone acid titers in the hemolymph and in vitro juvenile hormone synthesis by corpora allata of the silkworm, Bombyx mori. J. Insect Physiol. 43, 875-884. https://doi.org/10.1016/S0022-1910(97)00021-8
  26. Ojima, N., Hara, Y., Ito, H., Yamamoto, D., 2018. Genetic dissection of stress-induced reproductive arrest in Drosophila melanogaster females. PLoS Genet. 14, 1-15.
  27. Park, Y., Filippov, V., Gill, S.S., Adams, M.E., 2002. Deletion of the ecdysis-triggering hormone gene leads to lethal ecdysis deficiency. Development 129, 493-503. https://doi.org/10.1242/dev.129.2.493
  28. Park, Y., Kim, Y.J., Dupriez, V., Adams, M.E., 2003. Two subtypes of ecdysis-triggering hormone receptor in Drosophila melanogaster. J. Biol. Chem. 278, 17710-17715. https://doi.org/10.1074/jbc.M301119200
  29. Pilpel, N., Nezer, I., Applebaum, S.W., Heifetz, Y., 2008. Matingincreases trypsin in female Drosophila hemolymph. Insect Biochem. Mol. Biol. 38, 320-330. https://doi.org/10.1016/j.ibmb.2007.11.010
  30. Postlethwait, J.H., Handler, A.M., 1979. The roles of juvenile hormone and 20-hydroxy-ecdysone during vitellogenesis in isolated abdomens of Drosophila melanogaster. J. Insect Physiol. 25, 455-460. https://doi.org/10.1016/0022-1910(79)90014-3
  31. Pritchett, T.L., Tanner, E.A., McCall, K., 2009. Cracking open cell death in the Drosophila ovary. Apoptosis 14, 969-979. https://doi.org/10.1007/s10495-009-0369-z
  32. Riddiford, L.M., 1993. Hormones and Drosophila development, in: Bate, M., Ariasm, A.M. (Eds.), The development of Drosophila melanogaster. Cold Spring Harbor Lab Press, New York, pp. 899-939
  33. Saunders, D.S., Henrich, V.C., Gilbert, L.I., 1989. Induction of diapause in Drosophila melanogaster: photoperiodic regulation and the impact of arrhythmic clock mutations on time measurement. Proc. Natl. Acad. Sci. U. S. A. 86, 3748-3752. https://doi.org/10.1073/pnas.86.10.3748
  34. Shafer, O.T., 2006. Reevaluation of Drosophila melanogaster's neuronal circadian pacemakers reveals new neuronal classes. J. Comp. Neurol. 498, 180-193. https://doi.org/10.1002/cne.21021
  35. Soller, M., Bownes, M., Kubli, E., 1997. Mating and sex peptide stimulate the accumulation of yolk in oocytes of Drosophila melanogaster. Eur. J. Biochem. 243, 732-738. https://doi.org/10.1111/j.1432-1033.1997.00732.x
  36. Soller, M., Bownes, M., Kubli, E., 1999. Control of oocyte maturation in sexually mature Drosophila females. Dev. Biol. 208, 337-351. https://doi.org/10.1006/dbio.1999.9210
  37. Spradling, A.C., 1993. Developmental genetics of oogenesis, in: Bate, M., Ariasm, A.M. (Eds.), The Development of Drosophila melanogaster. Cold Spring Harbor Lab Press, New York, pp. 1-70.
  38. Tatar, M., Kopelman, A., Epstein, D., Tu, M.P., Yin, C.M., Garofalo, R.S., 2001. A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function. Science 292, 107-110. https://doi.org/10.1126/science.1057987
  39. Terashima, J., Takaki, K., Sakurai, S., Bownes, M., 2005. Nutritional status affects 20-hydroxyecdysone concentration and progression of oogenesis in Drosophila melanogaster. J. Endocrinol. 187, 39-79.
  40. Wang, C., Zhang, J., Tobe, S.S., Bendena, W.G., 2012. Defining the contribution of select neuropeptides and their receptors in regulating sesquiterpenoid biosynthesis by Drosophila melanogaster ring gland/corpus allatum through RNAi analysis. Gen. Comp. Endocrinol. 176, 347-353. https://doi.org/10.1016/j.ygcen.2011.12.039
  41. Wang, F., Wang, K., Forknall, N., Patrick, C., Yang, T., Parekh, R., Bock, D., Dickson, B.J., 2020. Neural circuitry linking mating and egg laying in Drosophila females. Nature. 579, 101-105. https://doi.org/10.1038/s41586-020-2055-9
  42. Yamanaka, N., Yamamoto, S., Zitnan, D., Watanabe, K., Kawada, T., Satake, H., Kaneko, Y., Hiruma, K., Tanaka, Y., Shinoda, T., Kataoka, H., 2008. Neuropeptide receptor transcriptome reveals unidentified neuroendocrine pathways. PLoS ONE 3, 1-12.
  43. Yang, C. H., Rumpf, S., Xiang, Y., Gordon, M.D., Song, W., Jan, L.Y., Jan, Y.N., 2009. Control of the postmating behavioral switch in Drosophila females by internal sensory neurons. Neuron 61, 519-526. https://doi.org/10.1016/j.neuron.2008.12.021
  44. Yapici, N., Kim, Y.J., Ribeiro, C., Dickson, B.J., 2008. A receptor that mediates the post-mating switch in Drosophila reproductive behaviour. Nature 451, 33-37. https://doi.org/10.1038/nature06483
  45. Zhang, C., Daubnerova, I., Jang, Y.H., Kondo, S., Zitnan, D., Kim, Y.J., 2021. The neuropeptide allatostatin C from clock-associated DN1p neurons generates the circadian rhythm for oogenesis. Proc. Natl. Acad. Sci. U. S. A. 118, e2016878118 https://doi.org/10.1073/pnas.2016878118
  46. Zhang, C., Kim, A. J., Rivera Perez, C., Noriega, F.G., Kim, Y.J., 2022. The insect somatostatin pathway gates vitellogenesis progression during reproductive maturation and the post-mating response. Nat. Commun. 13, 969. https://doi.org/10.1038/s41467-022-28592-2
  47. Zhang, Y., Liu, Y., Bilodeau-Wentworth, D., Hardin, P.E., Emery, P., 2010. Light and temperature control the contribution of specific DN1 neurons to Drosophila circadian behavior. Curr. Biol. 20, 600-605. https://doi.org/10.1016/j.cub.2010.02.044
  48. Zitnan, D., Kingan, T.G., Hermesman, J.L., Adams, M.E., 1996. Identification of ecdysis-triggering hormone from an epitracheal endocrine system. Science 271, 88-91. https://doi.org/10.1126/science.271.5245.88