DOI QR코드

DOI QR Code

나방의 성페로몬 감지

Perception of Sex Pheromone in Moth

  • 박계청 (뉴질랜드 식물식품연구소)
  • 투고 : 2022.01.15
  • 심사 : 2022.02.23
  • 발행 : 2022.03.01

초록

나방은 성페로몬에 대한 통신시스템이 잘 발달되어 있다. 동종의 암컷이 방출하는 성페로몬을 원거리에서 감지하여 암컷을 정확히 찾아가 교미할 수 있도록 하기 위해서, 수컷 나방은 고도로 발달된 성페로몬 감지 시스템을 갖고 있다. 이러한 시스템을 이용해서 수컷 나방은 페로몬 냄새기둥(plume)을 따라 바람을 거슬러 비행하면서 간헐적으로 감지되는 페로몬 냄새가닥(odor filaments)을 추적하는 고정행동양식(stereotypic behavior)을 보인다. 일반적으로 여러 성분으로 구성되는 나방의 암컷 성페로몬은 그 조성이 종특이적(species-specific)이며, 비슷한 성분을 공유하는 유사종들이 방출하는 성페로몬과 동종의 암컷이 방출하는 성페로몬을 정확히 구분하기 위해서 수컷 나방은 촉각에 여러 종류의 고도로 특화된 페로몬 감각세포들을 갖고 있어서, 이들이 페로몬을 감지할 때 나오는 신경 신호들을 종합해서 동종의 페로몬을 인식하여 행동반응이 일어나게 된다. 수컷 나방은 보통 동종의 페로몬 성분뿐만 아니라 유사종이 사용하는 페로몬 성분들을 특이적으로 감지하는 길항적(antagonistic) 냄새감각세포들도 갖고 있어서 페로몬 식별력을 강화한다. 본 종설에서는 지금까지 보고된 수컷 나방의 페로몬 감지 시스템과 이와 연관된 수컷의 감각기 및 행동반응에 대한 연구 결과들을 정리하고, 이를 종합하여 앞으로의 연구 방향을 제시하고자 한다.

Moths have a well-developed sex pheromone communication system. Male moths exhibit an extremely sensitive and selective sex pheromone detection system so that they can detect the sex pheromone produced by conspecific females and locate them for successful mating. Using the pheromone detection system, male moths display characteristic stereotypic behavioral responses, flying upwind to follow intermittent filamentous pheromone strands in pheromone plume. The chemical composition of female sex pheromone in moths, typically comprised of multiple compounds, is species-specific. Male moths contain specialized pheromone receptor neurons on the antennae to detect conspecific sex pheromone accurately, and distinguish it from the pheromones produced by other species. The signals from pheromone receptor neurons are integrated and induce relevant behavior from the male moths. Male moths also contain olfactory sensory neurons in pheromone sensilla, specialized for pheromone-related behavioral antagonist compounds, which can enhance discrimination between conspecific and heterospecific pheromones. Here we review reports on the sex pheromone detection system in male moths and their related responses, and suggest future research direction.

키워드

과제정보

나방의 성페로몬 시스템에 대한 연구에 발을 들여 곤충의 화학생태 분야에 매료될 수 있도록 이끌어주신 고 부경생 교수님께 깊이 감사드립니다.

참고문헌

  1. Allison, J.D., Carde, R.T., 2008. Male pheromone blend preference function measured in choice and no-choice wind tunnel trials with almond moths, Cadra cautella. Anim. Behav. 75, 259-266. https://doi.org/10.1016/j.anbehav.2007.04.033
  2. Almaas, T.J., Mustaparta, H., 1991. Heliothis virescens: response characteristics of receptor neurons in sensilla trichodea type 1 and type 2. J. Chem. Ecol. 17, 953-972. https://doi.org/10.1007/BF01395602
  3. Ammagarahalli, B., Gemeno, C., 2014. Response profile of pheromone receptor neurons in male Grapholita molesta (Lepidoptera: Tortricidae). J. Insect Physiol. 71, 128-136. https://doi.org/10.1016/j.jinsphys.2014.10.011
  4. Anderson, P, Sadek, M.M., Hansson, B.S., 2003. Pre-exposure modulates attraction to sex pheromone in a moth. Chem. Senses. 28, 285-291. https://doi.org/10.1093/chemse/28.4.285
  5. Anderson, P., Hansson, B.S., Nilsson, U., Han, Q., Sjoholm, M., Skals, N., Anton, S., 2007. Increased behavioral and neuronal sensitivity to sex pheromone after brief odor experience in a moth. Chem. Senses 32, 483-491. https://doi.org/10.1093/chemse/bjm017
  6. Ando, T., Inomata, S., Yamamoto, M., 2004. Lepidopteran Sex Pheromones. In: Schulz, S. (Ed.), The chemistry of pheromones and other semiochemicals I, topics in current chemistry. Vol. 96. Springer-Verlag, Berlin, Heidelberg.
  7. Badeke, E., Haverkamp, A., Hansson, B.S., Sachse, S., 2016. A challenge for a male noctuid moth? Discerning the female sex pheromone against the background of plant volatiles. Frontiers Physiol. 7, 143. doi: 10.3389/fphys.2016.00143
  8. Baker, T.C., 2002. Mechanism for saltational shifts in pheromone communication systems. Proc. Natl Acad. Sci. 99, 13368-13370. https://doi.org/10.1073/pnas.222539799
  9. Baker, T.C., 2009. Nearest neural neighbors: moth sex pheromone receptors HR11 and HR13. Chem. Senses 34, 465-468. https://doi.org/10.1093/chemse/bjp025
  10. Baker, T.C., Carde, R.C., 1979. Endogenous and exogenous factors affecting periodicities of female calling and male sex pheromone response in Grapholitha molesta (Busck). J. Insect Physiol. 25, 943-950. https://doi.org/10.1016/0022-1910(79)90107-0
  11. Baker, T.C., Domingue, M.J., Myrick, A.J., 2012. Working range of stimulus flux transduction determines dendrite size and relative number of pheromone component receptor neurons in moths. Chem. Senses 37, 299-313. https://doi.org/10.1093/chemse/bjr122
  12. Baker, T.C., Fadamiro, H., 1998. Moth uses fine tuning for odour resolution. Nature 393, 530. https://doi.org/10.1038/31131
  13. Baker, T.C., Willis, M., Haynes, K.F., Phelan, P.L., 1985. A pulsed cloud of sex pheromone elicits upwind flight in male moths. Physiol. Entomol. 10, 257-265. https://doi.org/10.1111/j.1365-3032.1985.tb00045.x
  14. Barrozo, R.B., Jarriault, D., Deisig, N., Gemeno, C., Monsempes, C., Lucas, P., Gadenne, C., Anton, S., 2011. Mating-induced differential coding of plant odour and sex pheromone in a male moth. Eur. J. Neurosci. 33, 1841-1850. https://doi.org/10.1111/j.1460-9568.2011.07678.x
  15. Bartell, R.J., Roelofs, W.L., 1973. Inhibition of sexual response in males of the moth Argyroteania velutinana by brief exposures to synthetic pheromone or its geometrical isomer. J. Insect Physiol. 19, 655-661. https://doi.org/10.1016/0022-1910(73)90074-7
  16. Berg, B.G., Almaas, T.J., Bjaalie, J.G., Mustaparta, H., 1998. The macroglomerular complex of the antennal lobe in the tobacco budworm Heliothis virescens: specified subdivision in four compartments according to information about biologically significant compounds. J. Comp. Physiol. A. 183, 669-682. https://doi.org/10.1007/s003590050290
  17. Borrero-Echeverry, F., Bengtsson, M., Nakamuta, K., Witzgall, P., 2018. Plant odor and sex pheromone are integral elements of specific mate recognition in an insect herbivore. Evolution 72, 2225-2233. https://doi.org/10.1111/evo.13571
  18. Brill, F.M., Rosenbaum, T., Reus, I., Kleineidam, J.C., Nawrot, P.M., Rossler, W., 2013. Parallel processing via a dual olfactory pathway in the honeybee. J. Neurosci. 33, 2443-2456. https://doi.org/10.1523/JNEUROSCI.4268-12.2013
  19. Butenandt, A., Beckmann, R., Stamm, D., Hecker, E., 1959. Uber den Sexuallockstoff des Seidenspinners, Bombyx mori: Reindarstellung und Konstitution. Z. Naturforsch 14, 283-284.
  20. Castrovillo, P.J. , Carde, R.T., 1979. Environmental regulation of female calling and male pheromone response periodicities in the codling moth (Laspeyresia pomonella). J. Insect Physiol. 25, 659-667. https://doi.org/10.1016/0022-1910(79)90116-1
  21. Chang, H., Liu, Y., Ai, D., Jiang, X., Dong, S., Wang, G., 2017. A pheromone antagonist regulates optimal mating time in the moth Helicoverpa armigera. Curr. Biol. 27, 1610-1615. https://doi.org/10.1016/j.cub.2017.04.035
  22. Chemnitz, J., Jentschke, P.C., Ayasse, M., Steiger, S., 2015. Beyond species recognition: somatic state affects long-distance sex pheromone communication. Proc. Biol. Sci. 282, 20150832.
  23. Choi, M.Y., Fuerst, E.J., Rafaeli, A., Jurenka, R., 2003. Identification of a G protein-coupled receptor for pheromone biosynthesis activating neuropeptide from pheromone glands of the moth Helicoverpa zea. Proc. Natl Acad. Sci. 100, 9721-9726. https://doi.org/10.1073/pnas.1632485100
  24. Christensen, T., Hildebrand, G.J., 1987. Male-specific, sex pheromone-selective projection neurons in the antennal lobes of the moth Manduca sexta. J. Comp. Physiol. A. 160, 553-569. https://doi.org/10.1007/BF00611929
  25. Cotton, S., Fowler, K., Pomiankowski, A., 2004. Do sexual ornaments demonstrate heightened condition-dependent expression as predicted by the handicap hypothesis? Proc. Biol. Sci. 271, 771-783. https://doi.org/10.1098/rspb.2004.2688
  26. De Bruyne, M., Baker, T.C., 2008. Odor detection in insects: volatile codes. J. Chem. Ecol. 34, 882-897. https://doi.org/10.1007/s10886-008-9485-4
  27. Deng, J-Y., Wei, H., Huang, Y-P., Du, J-W., 2004. Enhancement of attraction to sex pheromones of Spodoptera exigua by volatile compounds produced by host plants. J. Chem. Ecol. 30, 2037-2045. https://doi.org/10.1023/B:JOEC.0000045593.62422.73
  28. Dickens, J.C., Smith, J.W., Light, D.M., 1993. Green leaf volatiles enhance sex attractant pheromone of the tobacco budworm, Heliothis virescens (Lep.: Noctuidae). Chemoecol. 4, 175-177. https://doi.org/10.1007/BF01256553
  29. Domingue, M.J., Musto, C.J., Linn, Jr. C.E., Roelofs, W.L., Baker, T.C., 2007. Altered olfactory receptor neuron responsiveness in rare Ostrinia nubilalis males attracted to the O. furnacalis pheromone blend. J. Insect Physiol. 53, 1063-1071. https://doi.org/10.1016/j.jinsphys.2007.05.013
  30. Durand, N., Carot-Sans, G., Bozzolan, F., Rosell, G., Siaussat, D., Debernard, S., Chertemps, T., Maibeche-Coisne, M., 2011. Degradation of pheromone and plant volatile components by a same odorant-degrading enzyme in the cotton leafworm, Spodoptera littoralis. PLoS ONE 6, e29147. doi: 10.1371/journal.pone.0029147
  31. Fabre, J.H., 1913. The great peacock moth. in: Teale, E.W. (Ed.), The insect world of J. Henri Fabre. 1964. Dodd, Mead & Co., New York.
  32. Figueredo, A.J., Baker, T.C., 1992. Reduction of the response to sex pheromone in the oriental fruit moth, Grapholita molesta (Lepidoptera: Tortricidae) following successive pheromonal exposures. J. Insect Behav. 5, 347-363. https://doi.org/10.1007/BF01049843
  33. Goldman, A.L., van Naters, W.V., Lessing, D., Warr, C.G., Carlson, J.R., 2005. Coexpression of two functional odor receptors in one neuron. Neuron 45, 661-666. https://doi.org/10.1016/j.neuron.2005.01.025
  34. Gomez, V.R.C., Nieto, G., Valdes, J., Castrejon, F., Rojas, J.C., 2003. The antennal sensilla of Zamagiria dixolophella Dyar (Lepidoptera: Pyralidae). Ann. Entomol. Soc. Am. 96, 672-678. https://doi.org/10.1603/0013-8746(2003)096[0672:TASOZD]2.0.CO;2
  35. Gonzalez-Karlsson, A., Golov, Y., Steinitz, H., Moncaz, A., Halon, E., Horowitz, R., Goldenberg, I., Gurka, R., Liberzon, A., Soroker, V., Jurenka, R., Harari, A.R., 2021. Males perceive honest information from female released sex pheromone in a moth. Behavior. Ecol. 32, 1127-1137. https://doi.org/10.1093/beheco/arab073
  36. Hansson, B.S., Blackwell, A., Hallberg, E., Lofqvist, J., 1995. Physiological and morphological characteristics of the sex pheromone detecting system in male corn stemborers, Chilo partellus (Lepidoptera: Pyralidae). J. Insect Physiol. 41, 171-178. https://doi.org/10.1016/0022-1910(94)00086-V
  37. Hansson, B.S., Hallberg, E., Lofstedt, C., Steinbrecht, R.A., 1994. Correlation between dendrite diameter and action potential amplitude in sex pheromone specific receptor neurons in male Ostrinia nubilalis. Tissue and Cell, 26, 503-512. https://doi.org/10.1016/0040-8166(94)90003-5
  38. Hansson, B.S., Sylvia, A., 2000. Function and morphology of the antennal lobe: New developments. Annu. Rev. Entomol. 45, 203-231. https://doi.org/10.1146/annurev.ento.45.1.203
  39. Harari, A.R., Zahavi, T., Thiery, D., 2011. Fitness cost of pheromone production in signaling female moths. Evolution 65, 1572-1582. https://doi.org/10.1111/j.1558-5646.2011.01252.x
  40. Ishida, Y., Leal, W.S., 2005. Rapid inactivation of a moth pheromone. Proc. Natl Acad. Sci. 102, 14075-14079. https://doi.org/10.1073/pnas.0505340102
  41. Jacob, V., Monsempes, C., Rospars, J.P., Masson, J.B., Lucas, P., 2017. Olfactory coding in the turbulent realm. PLoS Comput Biol. 13, e1005870. https://doi.org/10.1371/journal.pcbi.1005870
  42. Jing, L., Zhaoqun, L., Zongxiu, L., Xiaoming, C., Lei, B., Zhaojun, X., Chen, Z., 2019. Comparison of male antennal morphology and sensilla physiology for sex pheromone olfactory sensing between sibling moth species: Ectropis grisescens and Ectropis obliqua (Geometridae). Arch. Insect Biochem. Physiol. 101, e21545. doi: 10.1002/1rch.21545
  43. Judd, G.J.R., Gardiner, M.G.T., DeLury. N.C., Karg, G., 2005. Reduced antennal sensitivity, behavioural response, and attraction of male codling moths, Cydia pomonella, to their pheromone (E,E)-8,10-dodecandien-1-ol following various pre-exposure regimes. Entomol. Exp. Appl. 114, 63-78.
  44. Jung, C.R., Jung, J.K., Kim, Y., 2013. Effects of different sex pheromone compositions and host plants on the mating behavior of two Grapholita species. J. Asia-Pacific Entomol. 16, 507-512. https://doi.org/10.1016/j.aspen.2013.08.004
  45. Jurenka, R., 2017. Regulation of pheromone biosynthesis in moths. Curr. Opinion Insect Sci. 24, 29-35. https://doi.org/10.1016/j.cois.2017.09.002
  46. Justus, K.A., Carde, R.T., French, A.S., 2005. Dynamic properties of antennal responses to pheromone in two moth species. J. Neurophysiol. 93, 2233-2239. https://doi.org/10.1152/jn.00888.2004
  47. Kaissling, K.E., 1996. Peripheral mechanisms of pheromone reception in moths. Chem. Senses 21, 257-268. https://doi.org/10.1093/chemse/21.2.257
  48. Kaissling, K.-E., Priesner, E., 1970. Smell threshold of the silkmoth. Naturwissenschaften 57, 23-28. https://doi.org/10.1007/BF00593550
  49. Kanno, H., 1981 . Mating behaviour of the rice stem borer moth, Chilo suppressalis Walker (Lepidoptera: Pyralidae). V. Cdtical illumination intensity for female calling and male sexual response under various temperatures. Appl. Entomol. Zool. 16, 179-185. https://doi.org/10.1303/aez.16.179
  50. Karlson, P., Luscher, M., 1959. Pheromones: a new term for a class of biologically active substances. Nature 183, 55-66. https://doi.org/10.1038/183055a0
  51. Karpati, Z., Tasin, M., Carde, R.T., Dekker, T., 2013. Early quality assessment lessens pheromone specificity in a moth. Proc. Natl. Acad. Sci. 110, 7377-7382. https://doi.org/10.1073/pnas.1216145110
  52. Keil, T., 1989. Fine structure of the pheromone-sensitive sensilla on the antenna of the hawkmoth, Manduca sexta. Tissue Cell 21, 139-151. https://doi.org/10.1016/0040-8166(89)90028-1
  53. Kennedy, J.S., Ludlov, A.R., Sanders, D.J., 1981. Guidance of flying male moths by wind-born sex pheromone. Physiol. Entomol. 6, 395-412. https://doi.org/10.1111/j.1365-3032.1981.tb00655.x
  54. Koehl, M.A.R., 2006. The fluid mechanics of arthropod sniffing in turbulent odor plumes. Chem. Senses 31, 93-105. https://doi.org/10.1093/chemse/bjj009
  55. Koutroumpa, F.A., Karpati, Z., Monsempes, C., Hill, S.R., Hansson, B.S., Jacquin-Joly, E., Krieger, J., Dekker, T., 2014. Shifts in sensory neuron identity parallel differences in pheromone preference in the European corn borer. Front. Ecol. Evol. 2, 00065. doi: 10.3339/fevo.2014.00065
  56. Kozlov, M.V., Zhu, J., Philipp, P., Francke, W., Zvereva, E.L., Hansson, B.S., Lofstedt, C., 1996. Pheromone specificity in Eriocrania semipurpurella (Stephens) and E. sangii (Wood) (Lepidoptera: Eriocraniidae) based on chirality of semiochemicals. J. Chem. Ecol. 22, 431-454. https://doi.org/10.1007/BF02033647
  57. Krieger, J., Gondesen, I., Forstner, M., Gohl, T., Dewer, Y., Breer, H., 2009. HR11 and HR13 receptor-expressing neurons are housed together in pheromone-responsive sensilla trichodea of male Heliothis virescens. Chem. Senses 34, 469-477. https://doi.org/10.1093/chemse/bjp012
  58. Kuebler, S.L., Schubert, M., Karpati, Z., Hansson, B.S., Olsson, S.B., 2012. Antennal lobe processing correlates to moth olfactory behavior. J. Neurosci. 32, 5772-5782. https://doi.org/10.1523/JNEUROSCI.6225-11.2012
  59. Kumar, G.L., Keil, T.A., 1996. Pheromone stimulation induces cytoskeletal changes in olfactory dendrites of male silkmoths (Lepidoptera, Saturniidae, Bombycidae). Naturwissenschaften 83, 476-478. https://doi.org/10.1007/BF01144018
  60. Larsson, M.C., Hallberg, E., Kozlov, M.V., Franke, W., Hansson, B.S., Lofstedt, C., 2002. Specialized olfactory receptor neurons mediating intra- and interspecific chemical communication in leafminer moths Eriocrania spp. (Lepidoptera: Eriocraniidae). J. Exp. Biol. 205, 989-998. https://doi.org/10.1242/jeb.205.7.989
  61. Larsson, M.C., Hansson, B.S., 1998. Receptor neuron responses to potential sex pheromone components in the caddisfly Rhyacophila nubile (Trichoptera: Rhyacophilidae). J. Insect Physiol. 44, 189-196. https://doi.org/10.1016/S0022-1910(97)00043-7
  62. Lebreton, S., Borrero-Echeverry, F., Gonzalez, F., Solum, M., Wallin, E.A., Hedenstrom, E., Hansson, B.S., Gustavsson, A.L., Bengtsson, M., Birgersson, G., Walker III, W.B., Dweck, H.K.M., Becher, P.G., Witzgall, P., 2017. A Drosophila female pheromone elicits species-specific long-range attraction via an olfactory channel with dual specificity for sex and food. BMC Biology 15, 88. doi: 10.1186/s12915-017-0427-x
  63. Lee, J.K., Strausfeld, N.J., 1990. Structure, distribution, and number of surface sensilla and their receptor cells on the antennal flagellum of the male sphinx moth Manduca sexta. J. Neurocytol. 19, 519-538. https://doi.org/10.1007/BF01257241
  64. Lee, S.G., 2006. Pheromone-related olfactory neuronal pathways of male heliothine moths. PhD thesis. The Pennsylvania State University. pp. 120-166.
  65. Lee, S.G., Vickers, N.J., Baker, T.C., 2006. Glomerular targets of Heliothis subflexa male olfactory receptor neurons housed within long trichoid sensilla. Chem. Senses. 9, 821-834.
  66. Levakova, M., Kostal, L., Monsempes, C., Jacob, V., Lucas, P., 2018. Moth olfactory receptor neurons adjust their encoding efficiency to temporal statistics of pheromone fluctuations. PLoS Comput. Biol. 14, e1006586 https://doi.org/10.1371/journal.pcbi.1006586
  67. Light, D.M., Flath, R.A., Buttery, R.G., Zalom, F.G., Rice, R.E., Dickens, J.C., Jang, E.B., 1993. Host-plant green-leaf volatiles synergize the synthetic sex pheromones of the corn earworm and codling moth (Lepidoptera). Chemoecol. 4, 145-152. https://doi.org/10.1007/BF01256549
  68. Liu, C., Liu, Y., Walker, W.B., Dong, S., Wang, G., 2013. Identification and functional characterization of sex pheromone receptors in beet armyworm Spodoptera exigua (Hubner). Insect Biochem. Mol. Biol. 43, 747-754. https://doi.org/10.1016/j.ibmb.2013.05.009
  69. Lofstedt, C., Butlin, R.K., Guilford, T., Krebs, J.R., 1993. Moth pheromone genetics and evolution. Philos Trans. R. Soc. Lond. B Biol. Sci. 340, 167-177. https://doi.org/10.1098/rstb.1993.0055
  70. Lofstedt, C., Wahlberg, N., Millar, J.M., 2016. Evolutionary patterns of pheromone diversity in Lepidoptera, in: Allison, J.D., Carde, R.T. (Eds.), Pheromone communication in moths: evolution, behavior and application. University of California Press, Oakland, pp. 43-78.
  71. Mafra-Neto, A., Carde, R.T., 1994. Fine-scale structure of pheromone plumes modulates upwind orientation of flying moths. Nature 369, 142-144. https://doi.org/10.1038/369142a0
  72. Maitani, M.M., Allara, D.L., Park, K.C., Lee, S.G., Baker, T.C., 2010. Moth olfactory trichoid sensilla exhibit nanoscale-level heterogeneity in surface lipid properties. Arthropod Struct. Develop. 39, 1-16. https://doi.org/10.1016/j.asd.2009.08.004
  73. Masse, N.Y., Turner, C.G., Jefferis, S.X.E.G., 2009. Olfactory information processing in Drosophila. Curr. Biol. 19, 700-713. https://doi.org/10.1016/j.cub.2009.02.065
  74. McNeil, J.N., 1991. Behavioral ecology of pheromone-mediated communication in moths and its importance in the use of pheromone traps. Annu. Rev. Entomol. 36, 407-430. https://doi.org/10.1146/annurev.en.36.010191.002203
  75. Meng, L.Z., Wu, C.H., Wicklein, M., Kaissling, K.E., Bestmann, H.J., 1989. Number and sensitivity of three types of pheromone receptor-cells in Antheraea pernyi and Antheraea polyphemus. J. Comp. Physiol. A. 165, 139-146. https://doi.org/10.1007/BF00619188
  76. Millar, J.G., 2000. Polyene hydrocarbons and epoxides: a second major class of lepidopteran sex attractant pheromones. Annu. Rev. Entomol. 45, 575-604. https://doi.org/10.1146/annurev.ento.45.1.575
  77. Murlis, J., Jones, C.D., 1981. Fine-scale structure of odour plumes in relation to distant pheromone and other attractant sources. Physiol. Entomol. 6, 71-86. https://doi.org/10.1111/j.1365-3032.1981.tb00262.x
  78. Murlis, J., Willis, M.A., Carde, R.T., 2000. Spatial and temporal structures of pheromone plumes in fields and forests. Physiol. Entomol. 25, 211-222. https://doi.org/10.1046/j.1365-3032.2000.00176.x
  79. Murlis, J.S., Elkinton, J.S., Carde, R.T., 1992. Odor plumes and how insects use them. Annu. Rev. Entomol. 37, 505-532. https://doi.org/10.1146/annurev.en.37.010192.002445
  80. Murmu, M.S., Hanoune, J., Choi, A., Bureau, V., Renou, M., Dacher, M., Deisig, N., 2020. Modulatory effects of pheromone on olfactory learning and memory in moths. J. Insect Physiol. 127, 104159. https://doi.org/10.1016/j.jinsphys.2020.104159
  81. Naka, H., Fujii, T., 2020. Chemical divergences in the sex pheromone communication systems in moths, in: Ishikawa, Y. (Ed.), Insect sex pheromone research and beyond, Springer, Singapore, pp. 3-18.
  82. Nakagawa, T., Sakurai, T., Nishioka, T., Touhara, K., 2005. Insect sex pheromone signals mediated by specific combinations of olfactory receptors. Science 307, 1638-1642. https://doi.org/10.1126/science.1106267
  83. Nieberding, C.M., Fischer, K., Saastamoinen, M., Allen, C.E., Wallin, E.A., Hedenstrom, E., Brakefield, P.M., 2012. Cracking the olfactory code of a butterfly: the scent of ageing. Ecol. Lett. 15, 415-424. https://doi.org/10.1111/j.1461-0248.2012.01748.x
  84. Party, V., Hanot, C., Busser, D.S., Rochat, D., Renou, M., 2013. Changes in odor background affect the locomotory response to pheromone in moths. PLoS ONE 8, e52897. https://doi.org/10.1371/journal.pone.0052897
  85. Party, V., Hanot, C., Said, I., Rochat, D., Renou, M., 2009. Plant terpenes affect intensity and temporal parameters of pheromone detection in a moth. Chem. Senses 34, 763-774. https://doi.org/10.1093/chemse/bjp060
  86. Pasqual, C.D., Groot, A.T., Mappes, J., Burdfield-Steel, E., 2021. Evolutionary importance of intraspecific variation in sex pheromones. Trends Ecol. Evol. 36, 848-859. https://doi.org/10.1016/j.tree.2021.05.005
  87. Plettner, E., Lazar, J., Prestwich, E.G., Prestwich, G.D., 2000. Discrimination of pheromone enantiomers by two pheromone binding proteins from the gypsy moth Lymantria dispar. Biochemistry 39, 8953-8962. https://doi.org/10.1021/bi000461x
  88. Pregitzer, P., Schubert, M., Breer, H., Hansson, B.S., Sachse, S., Krieger, J., 2012. Plant odorants interfere with detection of sex pheromone signals by male Heliothis virescens. Front. Cell. Neurosci. 6, 42. https://doi.org/10.3389/fncel.2012.00042
  89. Reddy, G.V.P., Guerrero, A., 2000. Behavioral responses of the diamondback moth, Plutella xylostella, to green leaf volatiles of Brassica oleracea subsp capitata. J. Agric. Food Chem. 48, 6025-6029. https://doi.org/10.1021/jf0008689
  90. Renou, M., Gadenne, C., Tauban, D., 1996. Electrophysiological investigations of pheromone-sensitive sensilla in the hybrids between two moth species. J. Insect Physiol. 42, 267-277. https://doi.org/10.1016/0022-1910(95)00108-5
  91. Rospars, J.P., Lansky, P., Krivan, V., 2003. Extracellular transduction events under pulsed stimulation in moth olfactory sensilla. Chem. Senses 28, 509-522. https://doi.org/10.1093/chemse/28.6.509
  92. Rouyar, A., Deisig, N., Dupuy, F., Limousin, D., Wycke, M.A., Renou, M., Anton, S., 2015. Unexpected plant odor responses in a moth pheromone system. Front. Physiol. 6, 148. doi: 10.3389/fphys.2015.00148
  93. Ruther, J., Matschke, M., Garbe, L.A., Steiner, S., 2009. Quantity matters: male sex pheromone signals mate quality in the parasitic wasp Nasonia vitripennis. Proc. Biol. Sci. 276, 3303-3310.
  94. Schmidt-Busser, D., Von Arx, M., Guerin, P.M., 2009. Host plant volatiles serve to increase the response of male European grape berry moths, Eupoecilia ambiguella, to their sex pheromone. J. Comp. Physiol. A. 195, 853-864. https://doi.org/10.1007/s00359-009-0464-1
  95. Shorey, H.H. , Gaston, L.K., 1964. Sex pheromone of noctuid moths. III. Inhibition of male responses to the sex pheromone of Trichoplusia ni (Lepidoptera: Noctuidae). Ann. Entomol. Soc. Am. 57, 775-779. https://doi.org/10.1093/aesa/57.6.775
  96. Steinbrecht, R.A., 1997. Pore structures in insect olfactory sensilla: a review of data and concepts. Int. J. Insect Morphol. Embryol. 26, 229-245. https://doi.org/10.1016/S0020-7322(97)00024-X
  97. Stelinski, L.L., Miller, J.R., Gut, L.J., 2003. Presence of long-lasting peripheral adaptation in oblique-banded leafroller, Choristoneura rosaceana and absence of such adaptation in redbanded leafroller, Agryrotaenia velutiana. J. Chem. Ecol. 29, 405-423. https://doi.org/10.1023/A:1022638113121
  98. Stengl, M., 2010. Pheromone transduction in moths. Front. Cellular Neurosci. 4. doi: 10.3389/fncel.2010.00133
  99. Sun, L., Wang, Q., Zhang, Y., Tu, X., Yan, Y., Wang, Q., Dong, K., Zhang, Y., Xiao, Q., 2019. The sensilla trichodea-biased EoblPBP1 binds sex pheromones and green leaf volatiles in Ectropis obliqua Prout, a geometrid moth pest that uses Type-II sex pheromones. J. Insect Physiol. 116, 17-24. https://doi.org/10.1016/j.jinsphys.2019.04.005
  100. Todd, J.L., Baker, T.C., 1999. Function of peripheral olfactory organs, in: Hansson, B.S. (Ed.), Insect olfaction, Springer, New York, pp. 67-96.
  101. Tomescu, N., Stan, G., Chis, V., leleriu, S., Pastinaru, C., 1981. Influence of light and age on the response of males of Mamestra brassicae L. (Lepidoptera: Noctuidae) to sexual pheromone. Stud. Univ. Babes 26, 43-47.
  102. Tripathy, S., Peters, O.J., Staudacher, E.M., Kalwar, F.R., Hatfield, M.N., Daly, K.C., 2010. Odors pulsed at wing beat frequencies are tracked by primary olfactory networks and enhance odor detection. Front. Cell. Neurosci. 4, 1-14. doi: 10.3389/neuro.03.001.2010.
  103. Turgeon, J.J, McNeil, J.N., Roelofs, W.L., 1983. Responsiveness of Pseudaletia unipuncta males to the female sex pheromone. Physiol. Entomol. 8, 339-344. https://doi.org/10.1111/j.1365-3032.1983.tb00366.x
  104. Vickers, N.J., Baker, T.C., 1992, Male Heliothis virescens maintain upwind flight in response to experimentally pulsed filaments of their sex pheromone (Lepidoptera, Noctuidae). J. Insect Behav. 5, 699-687. https://doi.org/10.1007/BF01047981
  105. Vickers, N.J., Christensen, T.A., Baker, T.C., Hildebrand, J.G., 2001. Odour-plume dynamics influence the brain's olfactory code. Nature 410, 466-470. https://doi.org/10.1038/35068559
  106. Vogt, R.G., Riddiford, L.M., 1981. Pheromone binding and inactivation by moth antennae. Nature 293, 161-163. https://doi.org/10.1038/293161a0
  107. Vogt, R.G., Riddiford, L.M., Prestwich, G.D., 1985. Kinetic properties of a sex pheromone-degrading enzyme: the sensillar esterase of Antheraea polyphemus. Proc. Natl Acad. Sci. 82, 8827-8831. https://doi.org/10.1073/pnas.82.24.8827
  108. Wang, C., Wang, B., Wang, G., 2021. Functional characterization of sex pheromone neurons and receptors in the armyworm, Mythimna separata (Walker). Front. Neuroanat. 15, 673420. doi:10.3389/fnana.2021.673420
  109. Wanner, K.W., Nichols, A.S., Allen, J.E., Bunger, P.L., Garczynski, S.F., Linn, C.E., 2010. Sex pheromone receptor specificity in the European corn borer moth, Ostrinia nubilalis. PLoS ONE 5, e8685.doi: 10.1371/journal.pone.0008685
  110. Willis, M.A., Ford, E.A., Avondet, J.L., 2013. Odor tracking flight of male Manduca sexta moths along plumes of different crosssectional area. J. Comp. Physiol. A. 199, 1015-1036. https://doi.org/10.1007/s00359-013-0856-0
  111. Wu, H., Hou, C., Huang, L.Q., Yan, F.S., Wang, C.Z., 2013. Peripheral coding of sex pheromone blends with reverse ratios in two Helicoverpa Species. PLoS ONE 7, e70078.
  112. Yang, Z.H., Bengtsson, M., Witzgall, P., 2004. Host plant volatiles synergize response to sex pheromone in codling moth, Cydia pomonella. J. Chem. Ecol. 30, 619-629. https://doi.org/10.1023/B:JOEC.0000018633.94002.af
  113. Yuvaraj, J.K., Andersson, M.N., Anderbrant, O., Lofstedt, C., 2018. Diversity of olfactory structures: a comparative study of antennal sensilla in Trichoptera and Lepidoptera. Micron. 111, 9-18. https://doi.org/10.1016/j.micron.2018.05.006
  114. Zhang, D.D., Lofstedt, C., 2015. Moth pheromone receptors: gene sequences, function, and evolution. Front. Ecol. Evol. 3, 105. doi:10.3389/fevo.2015.00105
  115. Zhang, X.Q., Mang, D.Z., Liao, H., Ye, J., Qian, J.L., Dong, S.L., Zhang, Y.N., He, P., Zhang, Q.H., Purba, E.R., Zhang, L.W., 2021. Functional disparity of three pheromone-binding proteins to different sex pheromone components in Hyphantria cunea (Drury). J. Agric. Food Chem. 69, 55-66. https://doi.org/10.1021/acs.jafc.0c04476
  116. Zhu, J.W., Kozlov, M.V., Philipp, P., Francke, W., Lofstedt, C., 1995. Identification of a novel moth sex pheromone in Eriocrania cicatricella (Zett.) (Lepidoptera: Eriocraniidae) and its phylogenetic implications. J. Chem. Ecol. 21, 29-43. https://doi.org/10.1007/BF02033660
  117. Zweerus, N.L., van Wijk, M., Schal, C., Groot, A.T., 2021. Experimental evidence for female mate choice in a noctuid moth. Animal Behav. 179, 1-13. https://doi.org/10.1016/j.anbehav.2021.06.022