Browse > Article
http://dx.doi.org/10.5656/KSAE.2022.02.0.012

Perception of Sex Pheromone in Moth  

Park, Kye Chung (New Zealand Institute for Plant and Food Research)
Publication Information
Korean journal of applied entomology / v.61, no.1, 2022 , pp. 1-14 More about this Journal
Abstract
Moths have a well-developed sex pheromone communication system. Male moths exhibit an extremely sensitive and selective sex pheromone detection system so that they can detect the sex pheromone produced by conspecific females and locate them for successful mating. Using the pheromone detection system, male moths display characteristic stereotypic behavioral responses, flying upwind to follow intermittent filamentous pheromone strands in pheromone plume. The chemical composition of female sex pheromone in moths, typically comprised of multiple compounds, is species-specific. Male moths contain specialized pheromone receptor neurons on the antennae to detect conspecific sex pheromone accurately, and distinguish it from the pheromones produced by other species. The signals from pheromone receptor neurons are integrated and induce relevant behavior from the male moths. Male moths also contain olfactory sensory neurons in pheromone sensilla, specialized for pheromone-related behavioral antagonist compounds, which can enhance discrimination between conspecific and heterospecific pheromones. Here we review reports on the sex pheromone detection system in male moths and their related responses, and suggest future research direction.
Keywords
Antenna; Electroantennogram; Odor filament; Odor plume; Olfactory sensory neuron; Sensilla; Sex pheromone; Single sensillum recording;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Tripathy, S., Peters, O.J., Staudacher, E.M., Kalwar, F.R., Hatfield, M.N., Daly, K.C., 2010. Odors pulsed at wing beat frequencies are tracked by primary olfactory networks and enhance odor detection. Front. Cell. Neurosci. 4, 1-14. doi: 10.3389/neuro.03.001.2010.   DOI
2 Jacob, V., Monsempes, C., Rospars, J.P., Masson, J.B., Lucas, P., 2017. Olfactory coding in the turbulent realm. PLoS Comput Biol. 13, e1005870.   DOI
3 Meng, L.Z., Wu, C.H., Wicklein, M., Kaissling, K.E., Bestmann, H.J., 1989. Number and sensitivity of three types of pheromone receptor-cells in Antheraea pernyi and Antheraea polyphemus. J. Comp. Physiol. A. 165, 139-146.   DOI
4 Willis, M.A., Ford, E.A., Avondet, J.L., 2013. Odor tracking flight of male Manduca sexta moths along plumes of different crosssectional area. J. Comp. Physiol. A. 199, 1015-1036.   DOI
5 Zweerus, N.L., van Wijk, M., Schal, C., Groot, A.T., 2021. Experimental evidence for female mate choice in a noctuid moth. Animal Behav. 179, 1-13.   DOI
6 Naka, H., Fujii, T., 2020. Chemical divergences in the sex pheromone communication systems in moths, in: Ishikawa, Y. (Ed.), Insect sex pheromone research and beyond, Springer, Singapore, pp. 3-18.
7 Wanner, K.W., Nichols, A.S., Allen, J.E., Bunger, P.L., Garczynski, S.F., Linn, C.E., 2010. Sex pheromone receptor specificity in the European corn borer moth, Ostrinia nubilalis. PLoS ONE 5, e8685.doi: 10.1371/journal.pone.0008685   DOI
8 Christensen, T., Hildebrand, G.J., 1987. Male-specific, sex pheromone-selective projection neurons in the antennal lobes of the moth Manduca sexta. J. Comp. Physiol. A. 160, 553-569.   DOI
9 De Bruyne, M., Baker, T.C., 2008. Odor detection in insects: volatile codes. J. Chem. Ecol. 34, 882-897.   DOI
10 Deng, J-Y., Wei, H., Huang, Y-P., Du, J-W., 2004. Enhancement of attraction to sex pheromones of Spodoptera exigua by volatile compounds produced by host plants. J. Chem. Ecol. 30, 2037-2045.   DOI
11 Vickers, N.J., Christensen, T.A., Baker, T.C., Hildebrand, J.G., 2001. Odour-plume dynamics influence the brain's olfactory code. Nature 410, 466-470.   DOI
12 Vogt, R.G., Riddiford, L.M., 1981. Pheromone binding and inactivation by moth antennae. Nature 293, 161-163.   DOI
13 Renou, M., Gadenne, C., Tauban, D., 1996. Electrophysiological investigations of pheromone-sensitive sensilla in the hybrids between two moth species. J. Insect Physiol. 42, 267-277.   DOI
14 Levakova, M., Kostal, L., Monsempes, C., Jacob, V., Lucas, P., 2018. Moth olfactory receptor neurons adjust their encoding efficiency to temporal statistics of pheromone fluctuations. PLoS Comput. Biol. 14, e1006586   DOI
15 Light, D.M., Flath, R.A., Buttery, R.G., Zalom, F.G., Rice, R.E., Dickens, J.C., Jang, E.B., 1993. Host-plant green-leaf volatiles synergize the synthetic sex pheromones of the corn earworm and codling moth (Lepidoptera). Chemoecol. 4, 145-152.   DOI
16 Liu, C., Liu, Y., Walker, W.B., Dong, S., Wang, G., 2013. Identification and functional characterization of sex pheromone receptors in beet armyworm Spodoptera exigua (Hubner). Insect Biochem. Mol. Biol. 43, 747-754.   DOI
17 Karlson, P., Luscher, M., 1959. Pheromones: a new term for a class of biologically active substances. Nature 183, 55-66.   DOI
18 Turgeon, J.J, McNeil, J.N., Roelofs, W.L., 1983. Responsiveness of Pseudaletia unipuncta males to the female sex pheromone. Physiol. Entomol. 8, 339-344.   DOI
19 Vickers, N.J., Baker, T.C., 1992, Male Heliothis virescens maintain upwind flight in response to experimentally pulsed filaments of their sex pheromone (Lepidoptera, Noctuidae). J. Insect Behav. 5, 699-687.   DOI
20 Reddy, G.V.P., Guerrero, A., 2000. Behavioral responses of the diamondback moth, Plutella xylostella, to green leaf volatiles of Brassica oleracea subsp capitata. J. Agric. Food Chem. 48, 6025-6029.   DOI
21 Rospars, J.P., Lansky, P., Krivan, V., 2003. Extracellular transduction events under pulsed stimulation in moth olfactory sensilla. Chem. Senses 28, 509-522.   DOI
22 Fabre, J.H., 1913. The great peacock moth. in: Teale, E.W. (Ed.), The insect world of J. Henri Fabre. 1964. Dodd, Mead & Co., New York.
23 Dickens, J.C., Smith, J.W., Light, D.M., 1993. Green leaf volatiles enhance sex attractant pheromone of the tobacco budworm, Heliothis virescens (Lep.: Noctuidae). Chemoecol. 4, 175-177.   DOI
24 Domingue, M.J., Musto, C.J., Linn, Jr. C.E., Roelofs, W.L., Baker, T.C., 2007. Altered olfactory receptor neuron responsiveness in rare Ostrinia nubilalis males attracted to the O. furnacalis pheromone blend. J. Insect Physiol. 53, 1063-1071.   DOI
25 Durand, N., Carot-Sans, G., Bozzolan, F., Rosell, G., Siaussat, D., Debernard, S., Chertemps, T., Maibeche-Coisne, M., 2011. Degradation of pheromone and plant volatile components by a same odorant-degrading enzyme in the cotton leafworm, Spodoptera littoralis. PLoS ONE 6, e29147. doi: 10.1371/journal.pone.0029147   DOI
26 Figueredo, A.J., Baker, T.C., 1992. Reduction of the response to sex pheromone in the oriental fruit moth, Grapholita molesta (Lepidoptera: Tortricidae) following successive pheromonal exposures. J. Insect Behav. 5, 347-363.   DOI
27 Lofstedt, C., Butlin, R.K., Guilford, T., Krebs, J.R., 1993. Moth pheromone genetics and evolution. Philos Trans. R. Soc. Lond. B Biol. Sci. 340, 167-177.   DOI
28 Vogt, R.G., Riddiford, L.M., Prestwich, G.D., 1985. Kinetic properties of a sex pheromone-degrading enzyme: the sensillar esterase of Antheraea polyphemus. Proc. Natl Acad. Sci. 82, 8827-8831.   DOI
29 Wang, C., Wang, B., Wang, G., 2021. Functional characterization of sex pheromone neurons and receptors in the armyworm, Mythimna separata (Walker). Front. Neuroanat. 15, 673420. doi:10.3389/fnana.2021.673420   DOI
30 Wu, H., Hou, C., Huang, L.Q., Yan, F.S., Wang, C.Z., 2013. Peripheral coding of sex pheromone blends with reverse ratios in two Helicoverpa Species. PLoS ONE 7, e70078.
31 Lofstedt, C., Wahlberg, N., Millar, J.M., 2016. Evolutionary patterns of pheromone diversity in Lepidoptera, in: Allison, J.D., Carde, R.T. (Eds.), Pheromone communication in moths: evolution, behavior and application. University of California Press, Oakland, pp. 43-78.
32 Mafra-Neto, A., Carde, R.T., 1994. Fine-scale structure of pheromone plumes modulates upwind orientation of flying moths. Nature 369, 142-144.   DOI
33 Shorey, H.H. , Gaston, L.K., 1964. Sex pheromone of noctuid moths. III. Inhibition of male responses to the sex pheromone of Trichoplusia ni (Lepidoptera: Noctuidae). Ann. Entomol. Soc. Am. 57, 775-779.   DOI
34 Baker, T.C., Carde, R.C., 1979. Endogenous and exogenous factors affecting periodicities of female calling and male sex pheromone response in Grapholitha molesta (Busck). J. Insect Physiol. 25, 943-950.   DOI
35 Steinbrecht, R.A., 1997. Pore structures in insect olfactory sensilla: a review of data and concepts. Int. J. Insect Morphol. Embryol. 26, 229-245.   DOI
36 Cotton, S., Fowler, K., Pomiankowski, A., 2004. Do sexual ornaments demonstrate heightened condition-dependent expression as predicted by the handicap hypothesis? Proc. Biol. Sci. 271, 771-783.   DOI
37 Hansson, B.S., Blackwell, A., Hallberg, E., Lofqvist, J., 1995. Physiological and morphological characteristics of the sex pheromone detecting system in male corn stemborers, Chilo partellus (Lepidoptera: Pyralidae). J. Insect Physiol. 41, 171-178.   DOI
38 Rouyar, A., Deisig, N., Dupuy, F., Limousin, D., Wycke, M.A., Renou, M., Anton, S., 2015. Unexpected plant odor responses in a moth pheromone system. Front. Physiol. 6, 148. doi: 10.3389/fphys.2015.00148   DOI
39 Ruther, J., Matschke, M., Garbe, L.A., Steiner, S., 2009. Quantity matters: male sex pheromone signals mate quality in the parasitic wasp Nasonia vitripennis. Proc. Biol. Sci. 276, 3303-3310.
40 Schmidt-Busser, D., Von Arx, M., Guerin, P.M., 2009. Host plant volatiles serve to increase the response of male European grape berry moths, Eupoecilia ambiguella, to their sex pheromone. J. Comp. Physiol. A. 195, 853-864.   DOI
41 Millar, J.G., 2000. Polyene hydrocarbons and epoxides: a second major class of lepidopteran sex attractant pheromones. Annu. Rev. Entomol. 45, 575-604.   DOI
42 Maitani, M.M., Allara, D.L., Park, K.C., Lee, S.G., Baker, T.C., 2010. Moth olfactory trichoid sensilla exhibit nanoscale-level heterogeneity in surface lipid properties. Arthropod Struct. Develop. 39, 1-16.   DOI
43 Masse, N.Y., Turner, C.G., Jefferis, S.X.E.G., 2009. Olfactory information processing in Drosophila. Curr. Biol. 19, 700-713.   DOI
44 McNeil, J.N., 1991. Behavioral ecology of pheromone-mediated communication in moths and its importance in the use of pheromone traps. Annu. Rev. Entomol. 36, 407-430.   DOI
45 Kuebler, S.L., Schubert, M., Karpati, Z., Hansson, B.S., Olsson, S.B., 2012. Antennal lobe processing correlates to moth olfactory behavior. J. Neurosci. 32, 5772-5782.   DOI
46 Berg, B.G., Almaas, T.J., Bjaalie, J.G., Mustaparta, H., 1998. The macroglomerular complex of the antennal lobe in the tobacco budworm Heliothis virescens: specified subdivision in four compartments according to information about biologically significant compounds. J. Comp. Physiol. A. 183, 669-682.   DOI
47 Stengl, M., 2010. Pheromone transduction in moths. Front. Cellular Neurosci. 4. doi: 10.3389/fncel.2010.00133   DOI
48 Sun, L., Wang, Q., Zhang, Y., Tu, X., Yan, Y., Wang, Q., Dong, K., Zhang, Y., Xiao, Q., 2019. The sensilla trichodea-biased EoblPBP1 binds sex pheromones and green leaf volatiles in Ectropis obliqua Prout, a geometrid moth pest that uses Type-II sex pheromones. J. Insect Physiol. 116, 17-24.   DOI
49 Goldman, A.L., van Naters, W.V., Lessing, D., Warr, C.G., Carlson, J.R., 2005. Coexpression of two functional odor receptors in one neuron. Neuron 45, 661-666.   DOI
50 Choi, M.Y., Fuerst, E.J., Rafaeli, A., Jurenka, R., 2003. Identification of a G protein-coupled receptor for pheromone biosynthesis activating neuropeptide from pheromone glands of the moth Helicoverpa zea. Proc. Natl Acad. Sci. 100, 9721-9726.   DOI
51 Kumar, G.L., Keil, T.A., 1996. Pheromone stimulation induces cytoskeletal changes in olfactory dendrites of male silkmoths (Lepidoptera, Saturniidae, Bombycidae). Naturwissenschaften 83, 476-478.   DOI
52 Larsson, M.C., Hallberg, E., Kozlov, M.V., Franke, W., Hansson, B.S., Lofstedt, C., 2002. Specialized olfactory receptor neurons mediating intra- and interspecific chemical communication in leafminer moths Eriocrania spp. (Lepidoptera: Eriocraniidae). J. Exp. Biol. 205, 989-998.   DOI
53 Murlis, J.S., Elkinton, J.S., Carde, R.T., 1992. Odor plumes and how insects use them. Annu. Rev. Entomol. 37, 505-532.   DOI
54 Baker, T.C., Domingue, M.J., Myrick, A.J., 2012. Working range of stimulus flux transduction determines dendrite size and relative number of pheromone component receptor neurons in moths. Chem. Senses 37, 299-313.   DOI
55 Baker, T.C., Fadamiro, H., 1998. Moth uses fine tuning for odour resolution. Nature 393, 530.   DOI
56 Bartell, R.J., Roelofs, W.L., 1973. Inhibition of sexual response in males of the moth Argyroteania velutinana by brief exposures to synthetic pheromone or its geometrical isomer. J. Insect Physiol. 19, 655-661.   DOI
57 Lee, S.G., Vickers, N.J., Baker, T.C., 2006. Glomerular targets of Heliothis subflexa male olfactory receptor neurons housed within long trichoid sensilla. Chem. Senses. 9, 821-834.
58 Jing, L., Zhaoqun, L., Zongxiu, L., Xiaoming, C., Lei, B., Zhaojun, X., Chen, Z., 2019. Comparison of male antennal morphology and sensilla physiology for sex pheromone olfactory sensing between sibling moth species: Ectropis grisescens and Ectropis obliqua (Geometridae). Arch. Insect Biochem. Physiol. 101, e21545. doi: 10.1002/1rch.21545   DOI
59 Murlis, J., Jones, C.D., 1981. Fine-scale structure of odour plumes in relation to distant pheromone and other attractant sources. Physiol. Entomol. 6, 71-86.   DOI
60 Murlis, J., Willis, M.A., Carde, R.T., 2000. Spatial and temporal structures of pheromone plumes in fields and forests. Physiol. Entomol. 25, 211-222.   DOI
61 Murmu, M.S., Hanoune, J., Choi, A., Bureau, V., Renou, M., Dacher, M., Deisig, N., 2020. Modulatory effects of pheromone on olfactory learning and memory in moths. J. Insect Physiol. 127, 104159.   DOI
62 Zhang, X.Q., Mang, D.Z., Liao, H., Ye, J., Qian, J.L., Dong, S.L., Zhang, Y.N., He, P., Zhang, Q.H., Purba, E.R., Zhang, L.W., 2021. Functional disparity of three pheromone-binding proteins to different sex pheromone components in Hyphantria cunea (Drury). J. Agric. Food Chem. 69, 55-66.   DOI
63 Yang, Z.H., Bengtsson, M., Witzgall, P., 2004. Host plant volatiles synergize response to sex pheromone in codling moth, Cydia pomonella. J. Chem. Ecol. 30, 619-629.   DOI
64 Yuvaraj, J.K., Andersson, M.N., Anderbrant, O., Lofstedt, C., 2018. Diversity of olfactory structures: a comparative study of antennal sensilla in Trichoptera and Lepidoptera. Micron. 111, 9-18.   DOI
65 Zhang, D.D., Lofstedt, C., 2015. Moth pheromone receptors: gene sequences, function, and evolution. Front. Ecol. Evol. 3, 105. doi:10.3389/fevo.2015.00105   DOI
66 Zhu, J.W., Kozlov, M.V., Philipp, P., Francke, W., Lofstedt, C., 1995. Identification of a novel moth sex pheromone in Eriocrania cicatricella (Zett.) (Lepidoptera: Eriocraniidae) and its phylogenetic implications. J. Chem. Ecol. 21, 29-43.   DOI
67 Badeke, E., Haverkamp, A., Hansson, B.S., Sachse, S., 2016. A challenge for a male noctuid moth? Discerning the female sex pheromone against the background of plant volatiles. Frontiers Physiol. 7, 143. doi: 10.3389/fphys.2016.00143   DOI
68 Judd, G.J.R., Gardiner, M.G.T., DeLury. N.C., Karg, G., 2005. Reduced antennal sensitivity, behavioural response, and attraction of male codling moths, Cydia pomonella, to their pheromone (E,E)-8,10-dodecandien-1-ol following various pre-exposure regimes. Entomol. Exp. Appl. 114, 63-78.
69 Allison, J.D., Carde, R.T., 2008. Male pheromone blend preference function measured in choice and no-choice wind tunnel trials with almond moths, Cadra cautella. Anim. Behav. 75, 259-266.   DOI
70 Anderson, P, Sadek, M.M., Hansson, B.S., 2003. Pre-exposure modulates attraction to sex pheromone in a moth. Chem. Senses. 28, 285-291.   DOI
71 Baker, T.C., Willis, M., Haynes, K.F., Phelan, P.L., 1985. A pulsed cloud of sex pheromone elicits upwind flight in male moths. Physiol. Entomol. 10, 257-265.   DOI
72 Barrozo, R.B., Jarriault, D., Deisig, N., Gemeno, C., Monsempes, C., Lucas, P., Gadenne, C., Anton, S., 2011. Mating-induced differential coding of plant odour and sex pheromone in a male moth. Eur. J. Neurosci. 33, 1841-1850.   DOI
73 Koutroumpa, F.A., Karpati, Z., Monsempes, C., Hill, S.R., Hansson, B.S., Jacquin-Joly, E., Krieger, J., Dekker, T., 2014. Shifts in sensory neuron identity parallel differences in pheromone preference in the European corn borer. Front. Ecol. Evol. 2, 00065. doi: 10.3339/fevo.2014.00065   DOI
74 Larsson, M.C., Hansson, B.S., 1998. Receptor neuron responses to potential sex pheromone components in the caddisfly Rhyacophila nubile (Trichoptera: Rhyacophilidae). J. Insect Physiol. 44, 189-196.   DOI
75 Lebreton, S., Borrero-Echeverry, F., Gonzalez, F., Solum, M., Wallin, E.A., Hedenstrom, E., Hansson, B.S., Gustavsson, A.L., Bengtsson, M., Birgersson, G., Walker III, W.B., Dweck, H.K.M., Becher, P.G., Witzgall, P., 2017. A Drosophila female pheromone elicits species-specific long-range attraction via an olfactory channel with dual specificity for sex and food. BMC Biology 15, 88. doi: 10.1186/s12915-017-0427-x   DOI
76 Todd, J.L., Baker, T.C., 1999. Function of peripheral olfactory organs, in: Hansson, B.S. (Ed.), Insect olfaction, Springer, New York, pp. 67-96.
77 Tomescu, N., Stan, G., Chis, V., leleriu, S., Pastinaru, C., 1981. Influence of light and age on the response of males of Mamestra brassicae L. (Lepidoptera: Noctuidae) to sexual pheromone. Stud. Univ. Babes 26, 43-47.
78 Koehl, M.A.R., 2006. The fluid mechanics of arthropod sniffing in turbulent odor plumes. Chem. Senses 31, 93-105.   DOI
79 Chang, H., Liu, Y., Ai, D., Jiang, X., Dong, S., Wang, G., 2017. A pheromone antagonist regulates optimal mating time in the moth Helicoverpa armigera. Curr. Biol. 27, 1610-1615.   DOI
80 Brill, F.M., Rosenbaum, T., Reus, I., Kleineidam, J.C., Nawrot, P.M., Rossler, W., 2013. Parallel processing via a dual olfactory pathway in the honeybee. J. Neurosci. 33, 2443-2456.   DOI
81 Party, V., Hanot, C., Busser, D.S., Rochat, D., Renou, M., 2013. Changes in odor background affect the locomotory response to pheromone in moths. PLoS ONE 8, e52897.   DOI
82 Kaissling, K.E., 1996. Peripheral mechanisms of pheromone reception in moths. Chem. Senses 21, 257-268.   DOI
83 Lee, J.K., Strausfeld, N.J., 1990. Structure, distribution, and number of surface sensilla and their receptor cells on the antennal flagellum of the male sphinx moth Manduca sexta. J. Neurocytol. 19, 519-538.   DOI
84 Lee, S.G., 2006. Pheromone-related olfactory neuronal pathways of male heliothine moths. PhD thesis. The Pennsylvania State University. pp. 120-166.
85 Ando, T., Inomata, S., Yamamoto, M., 2004. Lepidopteran Sex Pheromones. In: Schulz, S. (Ed.), The chemistry of pheromones and other semiochemicals I, topics in current chemistry. Vol. 96. Springer-Verlag, Berlin, Heidelberg.
86 Borrero-Echeverry, F., Bengtsson, M., Nakamuta, K., Witzgall, P., 2018. Plant odor and sex pheromone are integral elements of specific mate recognition in an insect herbivore. Evolution 72, 2225-2233.   DOI
87 Butenandt, A., Beckmann, R., Stamm, D., Hecker, E., 1959. Uber den Sexuallockstoff des Seidenspinners, Bombyx mori: Reindarstellung und Konstitution. Z. Naturforsch 14, 283-284.
88 Kozlov, M.V., Zhu, J., Philipp, P., Francke, W., Zvereva, E.L., Hansson, B.S., Lofstedt, C., 1996. Pheromone specificity in Eriocrania semipurpurella (Stephens) and E. sangii (Wood) (Lepidoptera: Eriocraniidae) based on chirality of semiochemicals. J. Chem. Ecol. 22, 431-454.   DOI
89 Nakagawa, T., Sakurai, T., Nishioka, T., Touhara, K., 2005. Insect sex pheromone signals mediated by specific combinations of olfactory receptors. Science 307, 1638-1642.   DOI
90 Nieberding, C.M., Fischer, K., Saastamoinen, M., Allen, C.E., Wallin, E.A., Hedenstrom, E., Brakefield, P.M., 2012. Cracking the olfactory code of a butterfly: the scent of ageing. Ecol. Lett. 15, 415-424.   DOI
91 Almaas, T.J., Mustaparta, H., 1991. Heliothis virescens: response characteristics of receptor neurons in sensilla trichodea type 1 and type 2. J. Chem. Ecol. 17, 953-972.   DOI
92 Castrovillo, P.J. , Carde, R.T., 1979. Environmental regulation of female calling and male pheromone response periodicities in the codling moth (Laspeyresia pomonella). J. Insect Physiol. 25, 659-667.   DOI
93 Chemnitz, J., Jentschke, P.C., Ayasse, M., Steiger, S., 2015. Beyond species recognition: somatic state affects long-distance sex pheromone communication. Proc. Biol. Sci. 282, 20150832.
94 Keil, T., 1989. Fine structure of the pheromone-sensitive sensilla on the antenna of the hawkmoth, Manduca sexta. Tissue Cell 21, 139-151.   DOI
95 Plettner, E., Lazar, J., Prestwich, E.G., Prestwich, G.D., 2000. Discrimination of pheromone enantiomers by two pheromone binding proteins from the gypsy moth Lymantria dispar. Biochemistry 39, 8953-8962.   DOI
96 Party, V., Hanot, C., Said, I., Rochat, D., Renou, M., 2009. Plant terpenes affect intensity and temporal parameters of pheromone detection in a moth. Chem. Senses 34, 763-774.   DOI
97 Stelinski, L.L., Miller, J.R., Gut, L.J., 2003. Presence of long-lasting peripheral adaptation in oblique-banded leafroller, Choristoneura rosaceana and absence of such adaptation in redbanded leafroller, Agryrotaenia velutiana. J. Chem. Ecol. 29, 405-423.   DOI
98 Pregitzer, P., Schubert, M., Breer, H., Hansson, B.S., Sachse, S., Krieger, J., 2012. Plant odorants interfere with detection of sex pheromone signals by male Heliothis virescens. Front. Cell. Neurosci. 6, 42.   DOI
99 Pasqual, C.D., Groot, A.T., Mappes, J., Burdfield-Steel, E., 2021. Evolutionary importance of intraspecific variation in sex pheromones. Trends Ecol. Evol. 36, 848-859.   DOI
100 Jung, C.R., Jung, J.K., Kim, Y., 2013. Effects of different sex pheromone compositions and host plants on the mating behavior of two Grapholita species. J. Asia-Pacific Entomol. 16, 507-512.   DOI
101 Ammagarahalli, B., Gemeno, C., 2014. Response profile of pheromone receptor neurons in male Grapholita molesta (Lepidoptera: Tortricidae). J. Insect Physiol. 71, 128-136.   DOI
102 Anderson, P., Hansson, B.S., Nilsson, U., Han, Q., Sjoholm, M., Skals, N., Anton, S., 2007. Increased behavioral and neuronal sensitivity to sex pheromone after brief odor experience in a moth. Chem. Senses 32, 483-491.   DOI
103 Baker, T.C., 2002. Mechanism for saltational shifts in pheromone communication systems. Proc. Natl Acad. Sci. 99, 13368-13370.   DOI
104 Baker, T.C., 2009. Nearest neural neighbors: moth sex pheromone receptors HR11 and HR13. Chem. Senses 34, 465-468.   DOI
105 Kanno, H., 1981 . Mating behaviour of the rice stem borer moth, Chilo suppressalis Walker (Lepidoptera: Pyralidae). V. Cdtical illumination intensity for female calling and male sexual response under various temperatures. Appl. Entomol. Zool. 16, 179-185.   DOI
106 Jurenka, R., 2017. Regulation of pheromone biosynthesis in moths. Curr. Opinion Insect Sci. 24, 29-35.   DOI
107 Justus, K.A., Carde, R.T., French, A.S., 2005. Dynamic properties of antennal responses to pheromone in two moth species. J. Neurophysiol. 93, 2233-2239.   DOI
108 Kaissling, K.-E., Priesner, E., 1970. Smell threshold of the silkmoth. Naturwissenschaften 57, 23-28.   DOI
109 Karpati, Z., Tasin, M., Carde, R.T., Dekker, T., 2013. Early quality assessment lessens pheromone specificity in a moth. Proc. Natl. Acad. Sci. 110, 7377-7382.   DOI
110 Gomez, V.R.C., Nieto, G., Valdes, J., Castrejon, F., Rojas, J.C., 2003. The antennal sensilla of Zamagiria dixolophella Dyar (Lepidoptera: Pyralidae). Ann. Entomol. Soc. Am. 96, 672-678.   DOI
111 Hansson, B.S., Hallberg, E., Lofstedt, C., Steinbrecht, R.A., 1994. Correlation between dendrite diameter and action potential amplitude in sex pheromone specific receptor neurons in male Ostrinia nubilalis. Tissue and Cell, 26, 503-512.   DOI
112 Ishida, Y., Leal, W.S., 2005. Rapid inactivation of a moth pheromone. Proc. Natl Acad. Sci. 102, 14075-14079.   DOI
113 Krieger, J., Gondesen, I., Forstner, M., Gohl, T., Dewer, Y., Breer, H., 2009. HR11 and HR13 receptor-expressing neurons are housed together in pheromone-responsive sensilla trichodea of male Heliothis virescens. Chem. Senses 34, 469-477.   DOI
114 Kennedy, J.S., Ludlov, A.R., Sanders, D.J., 1981. Guidance of flying male moths by wind-born sex pheromone. Physiol. Entomol. 6, 395-412.   DOI
115 Gonzalez-Karlsson, A., Golov, Y., Steinitz, H., Moncaz, A., Halon, E., Horowitz, R., Goldenberg, I., Gurka, R., Liberzon, A., Soroker, V., Jurenka, R., Harari, A.R., 2021. Males perceive honest information from female released sex pheromone in a moth. Behavior. Ecol. 32, 1127-1137.   DOI
116 Hansson, B.S., Sylvia, A., 2000. Function and morphology of the antennal lobe: New developments. Annu. Rev. Entomol. 45, 203-231.   DOI
117 Harari, A.R., Zahavi, T., Thiery, D., 2011. Fitness cost of pheromone production in signaling female moths. Evolution 65, 1572-1582.   DOI