과제정보
This work was conducted with the support of the Korea Environment Industry & Technology Institute (KEITI) through its Urban Ecological Health Promotion Technology Development Project and funded by the Korea Ministry of Environment (MOE) (2019002760001). This work is financially supported by Korea Ministry of Land, Infrastructure and Transport (MOLIT) as 「Innovative Talent Education Program for Smart City」.
참고문헌
- Alexandre da Silva, M.V., Nunes Souza, J.V., de Souza, J.R.B., and Vieira, L.M. (2019). Modelling species distributions to predict areas at risk of invasion by the exotic aquatic New Zealand mudsnail Potamopyrgus antipodarum (Gray 1843). Freshwater Biology, 64, 1504-1518. https://doi.org/10.1111/fwb.13323
- Byers, J.E., McDowell, W.G., Dodd, S.R., Haynie, R.S., Pintor, L.M., and Wilde, S.B. (2013). Climate and pH predict the potential range of the invasive apple snail (Pomacea insularum) in the southeastern United States. PloS One, 8, e56812. https://doi.org/10.1371/journal.pone.0056812
- Byon, H., and Jeon, S. (1997). Feeding habit of Bluegill, Lepomis macrochirus Introduced in Korea. Korean Journal of Environmental Biology, 15, 165-174.
- Elith, J., Phillips, S.J., Hastie, T., Dudik, M., Chee, Y.E., and Yates, C.J. (2011). A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 17, 43-57. https://doi.org/10.1111/j.1472-4642.2010.00725.x
- Gallardo, B., Castro-Diez, P., Saldana-Lopez, A., and Alonso, A. (2020). Integrating climate, water chemistry and propagule pressure indicators into aquatic species distribution models. Ecological Indicators, 112, 106060. https://doi.org/10.1016/j.ecolind.2019.106060
- Griffiths, N.P., Bolland, J.D., Wright, R.M., Murphy, L.A., Donnelly, R.K., Watson, H.V., et al. (2020). Environmental DNA metabarcoding provides enhanced detection of the European eel Anguilla anguilla and fish community structure in pumped river catchments. Journal of Fish Biology, 97, 1375-1384. https://doi.org/10.1111/jfb.14497
- Harrel, R.C., Davis, B.J., and Dorris, T.C. (1967). Stream order and species diversity of fishes in an intermittent Oklahoma stream. American Midland Naturalist, 78, 428-436. https://doi.org/10.2307/2485240
- Horton, R.E. (1945). Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology. GSA Bulletin, 56, 275-370. https://doi.org/10.1130/0016-7606(1945)56[275:EDOSAT]2.0.CO;2
- Hunter, M.E., Oyler-McCance, S.J., Dorazio, R.M., Fike, J.A., Smith, B.J., Hunter, C.T., et al. (2015). Environmental DNA (eDNA) sampling improves occurrence and detection estimates of invasive burmese pythons. PloS One, 10, e0121655. https://doi.org/10.1371/journal.pone.0121655
- Information of Korean Alien Species. (2021). Micropterus salmoides. Retrieved December 30, 2021 from https://kias.nie.re.kr/home/for/for02002v.do?clsSno=20381&searchClsGbn=eco.
- Kang, J.G., and Kim, J.T. (2016). Experiment and assessment of ascending capability for management of exotic fish species. Journal of the Korea Academia-Industrial Cooperation Society, 17, 265-278. https://doi.org/10.5762/KAIS.2016.17.9.265
- Kim, H.M., Kil, J.H., Lee, E.H., and An, K.G. (2013). Distribution characteristics of largemouth bass (Micropterus salmoides) as an exotic species, in some medium-to-large size Korean reservoirs and physico-chemical water quality in the habitats. Korean Journal of Ecology and Environment, 46, 541-550. https://doi.org/10.11614/KSL.2013.46.4.541
- Kim, J.E., and Lee, H.G. (2018). The evaluation of potential invasive species in the Gangneungnamdae Stream in Korea using a fish invasiveness screening kit. Korean Journal of Environmental Biology, 36, 73-81. https://doi.org/10.11626/KJEB.2018.36.1.073
- Lee, D.S., Lee, D.Y., Ji, C.W., Kwak, I.S., Hwang, S.J., Lee, H.J., et al. Impacts of introduced fishes (Carassius cuvieri, Micropterus salmoides, Lepomis macrochirus) on stream fish communities in South Korea. Korean Journal of Ecology and Environment, 53, 241-254. https://doi.org/10.11614/KSL.2020.53.3.241
- Lee, W.O., Yang, H., Yoon, S.W., and Park, J.Y. (2009). Study on the feeding habits of Micropterus salmoides in Lake Okjeong and Lake Yongdam, Korea. Korean Journal of Ichthyology, 21, 200-207.
- Li, Y., Li, M., Li, C., and Liu, Z. (2020). Optimized maxent model predictions of climate change impacts on the suitable distribution of Cunninghamia lanceolata in China. Forests, 11, 302. https://doi.org/10.3390/f11030302
- Mamun, M., Kim, S., and An, K.G. (2018). Distribution pattern prediction of an invasive alien species largemouth bass using a maximum entropy model (MaxEnt) in the Korean peninsula. Journal of Asia-Pacific Biodiversity, 11, 516-524. https://doi.org/10.1016/j.japb.2018.09.007
- Miya, M., Sato, Y., Fukunaga, T., Sado, T., Poulsen, J.Y., Sato, K., et al. (2015). MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: detection of more than 230 subtropical marine species. Royal Society Open Science, 2, 150088. https://doi.org/10.1098/rsos.150088
- Muha, T.P., Rodriguez-Rey, M., Rolla, M., and Tricarico, E. (2017). Using environmental DNA to improve species distribution models for freshwater invaders. Frontiers in Ecology and Evolution, 5, 158. https://doi.org/10.3389/fevo.2017.00158
- Muri, C.D., Handley, L.L., Bean, C.W., Li, J., Peirson, G., Sellers, G.S., et al. (2020). Read counts from environmental DNA (eDNA) metabarcoding reflect fish abundance and biomass in drained ponds. Metabarcoding and Metagenomics, 4, e56959. https://doi.org/10.3897/mbmg.4.56959
- Olds, B.P., Jerde, C.L., Renshaw, M.A., Li, Y., Evans, N.T., Turner, C.R., et al. (2016). Estimating species richness using environmental DNA. Ecology and Evolution, 6, 4214-4226. https://doi.org/10.1002/ece3.2186
- Phillips, S.B., Aneja, V.P., Kang, D., and Arya, S.P. (2006). Modelling and analysis of the atmospheric nitrogen deposition in North Carolina. International Journal of Global Environmental, 6, 231-252.
- Phillips, S.J. (2017). A Brief Tutorial on Maxent. Retrieved December 30, 2021 from http://biodiversityinformatics.amnh.org/open_source/maxent/.
- Riaz, M., Kuemmerlen, M., Wittwer, C., Cocchiararo, B., Khaliq, I., Pfenninger, M., et al. (2020). Combining environmental DNA and species distribution modeling to evaluate reintroduction success of a freshwater fish. Ecological Applications, 30, e02034.
- Sato, Y., Miya, M., Fukunaga, T., Sado, T., and Iwasaki, W. (2018). MitoFish and MiFish pipeline: a mitochondrial genome database of fish with an analysis pipeline for environmental DNA metabarcoding. Molecular Biology and Evolution, 35, 1553-1555. https://doi.org/10.1093/molbev/msy074
- Silva Neto, J.G.D., Sutton, W.B., Spear, S.F., Freake, M.J., Kery, M., and Schmidt, B.R. (2020). Integrating species distribution and occupancy modeling to study hellbender (Cryptobranchus alleganiensis) occurrence based on eDNA surveys. Biological Conservation, 251, 108787. https://doi.org/10.1016/j.biocon.2020.108787
- Son, M., and Byun, J. (2019). An experimental study on the habitat characteristics of largemouth bass. Journal of Korea Water Resources Association, 52, 845-853. https://doi.org/10.3741/JKWRA.2019.52.S-2.845
- Strahler, A.N. (1957). Quantitative analysis of watershed geomorphology. Eos, Transactions American Geophysical Union, 38, 913-920. https://doi.org/10.1029/TR038i006p00913
- Stuber R.J., Gebhart, G., and Maughan, O.E. (1982a). Habitat Suitability Index Models: Largemouth Bass. Washington, D.C.: U. S. Department of Interior, Fish and Wildlife Service.
- Stuber R.J., Gebhart, G., and Maughan, O.E. (1982b). Habitat Suitability Index Models: Bluegill. Washington, D.C.: U. S. Department of Interior, Fish and Wildlife Service.
- Tikhonov, G., Abrego, N., Dunson, D., and Ovaskainen, O. (2017). Using joint species distribution models for evaluating how species-to-species associations depend on the environmental context. Methods in Ecology and Evolution, 8, 443-452. https://doi.org/10.1111/2041-210X.12723
- Ushio, M., Murata, K., Sado, T., Nishiumi, I., Takeshita, M., Iwasaki, W., et al. (2018). Demonstration of the potential of environmental DNA as a tool for the detection of avian species. Scientific Reports, 8, 4493. https://doi.org/10.1038/s41598-018-22817-5
- Vannote, R.L., Minshall, G.W., Cummins, K.W., Sedell, J.R., and Cushing, C.E. (1980). The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences, 37, 130-137. https://doi.org/10.1139/f80-017
- Vorste, R., McElmurray, P., Bell, S., Eliason, K.M., and Brown, B. (2017). Does stream size really explain biodiversity patterns in lotic systems? A call for mechanistic explanations. Diversity, 9, 26. https://doi.org/10.3390/d9030026
- Yang, X.Q., Kushwaha, S.P.S., Saran, S., Xu, J., and Roy, P.S. (2013). Maxent modeling for predicting the potential distribution of medicinal plant, Justicia adhatoda L. in Lesser Himalayan foothills. Ecological Engineering, 51, 83-87. https://doi.org/10.1016/j.ecoleng.2012.12.004
- Zhang, H., Yoshizawa, S., Iwasaki, W., and Xian, W. (2019). Seasonal fish assemblage structure using environmental DNA in the Yangtze Estuary and its adjacent waters. Frontiers in Marine Science, 6, 515. https://doi.org/10.3389/fmars.2019.00515