• Title/Summary/Keyword: Ecological parameter monitoring

Search Result 12, Processing Time 0.023 seconds

Application of the Carabid Beetles as Ecological Indicator Species for Wetland Characterization and Monitoring in Busan and Gyeongsangnam-do (습지지표종으로서 딱정벌레류를 이용한 부산, 경남 주요 습지의 특성 및 변화 관찰)

  • Do, Yu-Do;Moon, Tae-Young;Joo, Gea-Jae
    • Korean Journal of Environment and Ecology
    • /
    • v.21 no.1
    • /
    • pp.22-29
    • /
    • 2007
  • Investigation of carabid beetles as on ecological indicator species for wetland characterization and monitoring was conducted in three types of wetlands such as emergent wetland, forested wetland, and estuary, During the investigation period, twenty-eight species belonging to twenty-two genera and three families(Carabidae, Harpalidae, Brachinidae) were identified. The diversity of carabid beetles at riverine wetland such as Woopo (H'=1.18) and Hwapo-neup (H'=1.08) were higher than in the forested wetland (H'=1.03) and estuarine (H'=0.91). Species compositions in each wetland were significantly different(${\chi}^2=1716.8$, P<0.01). Riverine wetlands differed significantly from the forested wetland. Indicator species for the wetland chose with indicator species analysis were reacted sensitively on the parameter such as soil composition, moisture of soil, and environmental change. Thus, it was consequently suggested that these indicator species may be applied for wetland characterization and monitoring of the wetland ecosystem.

Analysis of ecological characteristic variations of small yellow croaker (Larimichthys polyactis) in Korea using long-term time series data (장기간 시계열 자료를 활용한 우리나라 참조기(Larimichthys polyactis) 자원의 생태학적특성 변동 분석)

  • Moo-Jin KIM;Heejoong KANG;Sang Chul YOON
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.60 no.3
    • /
    • pp.235-243
    • /
    • 2024
  • Researching and estimating the ecological characteristics of target fish species is crucial for fisheries resource management. The results of these estimates significantly influence stock assessments and management reference points such as size limit and closed seasons. Recently, ecological characteristics have been changing due to overfishing, climate change, and marine pollution, making continuous estimation and monitoring essential. This study analyzed the ecological changes in small yellow croaker (Larimichthys polyactis) resources in Korea over 24 years (2000-2023) using biological data (growth and gonad traits). By estimating the annual length-weight relationship and length at maturity (L50 and L95), we interpreted the numerical trends of early maturation due to resource depletion. The parameter b of the length-weight relationship, indicating the nutritional status of the resources, showed a slight increase over the years, suggesting relatively good nutritional status (b > 3.0) during most periods. Trend analysis between length at maturity and biomass indicated that as biomass decreased, maturity length also decreased.

Ecological health assessments using multiple parameters of fish blood tissues to community along with water chemistry in urban streams

  • Kang, Han-il;Choi, Ji-Woong;Hwang, Seock-Yeon;An, Kwang-Guk
    • Journal of Ecology and Environment
    • /
    • v.38 no.3
    • /
    • pp.307-318
    • /
    • 2015
  • The objectives of this study were to identify multi-level stressors from blood biomarkers to community-level bioindicators and diagnose the stream ecosystem health in polluted streams. Blood chemistry such as total protein ($T_{Pro}$), blood urea nitrogen ($B_{UN}$), total cholesterol ($T_{Cho}$) and $A_{lb}$umin ($A_{lb}$) were analyzed from sentinel fish tissues; the functions of kidney, gill and liver were significantly decreased in the impacted zone ($I_z$), compared to the control zone ($C_z$). Histopathological analysis showed that fish liver tissues were normal in the $C_z$. Fish liver tissues in the $I_z$, however, showed large cell necrosis and degeneration and also had moderate lobular inflammation and inflammatory cell infiltration of lymphocytic histocytes. Species biotic index (SBI) at species level and stream health assessment (SHA) at community level indicated that chemical impacts were evident in the $I_z$ (ecological health; poor - very poor), and this was matched with the blood tissue analysis and histopathological analysis. The impairments of the streams were supported by water chemistry analysis (nitrogen, phosphorus). Tolerance guild analysis and trophic guild analysis of fish were showed significant differences (P < 0.01) between $C_z$ and $I_z$. Overall, multiple parameter analysis from biomarker level (blood tissues) to bioindicator level (community health) showed significantly greater impacts in the $I_z$ than $C_z$. This approach may be effective as a monitoring tool in identifying the multilateral and forthcoming problems related to chemical pollution and habitat degradation of stream ecosystems.

Development of a Fusion Vegetation Index Using Full-PolSAR and Multispectral Data

  • Kim, Yong-Hyun;Oh, Jae-Hong;Kim, Yong-Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.6
    • /
    • pp.547-555
    • /
    • 2015
  • The vegetation index is a crucial parameter in many biophysical studies of vegetation, and is also a valuable content in ecological processes researching. The OVIs (Optical Vegetation Index) that of using multispectral and hyperspectral data have been widely investigated in the literature, while the RVI (Radar Vegetation Index) that of considering volume scattering measurement has been paid relatively little attention. Also, there was only some efforts have been put to fuse the OVI with the RVI as an integrated vegetation index. To address this issue, this paper presents a novel FVI (Fusion Vegetation Index) that uses multispectral and full-PolSAR (Polarimetric Synthetic Aperture Radar) data. By fusing a NDVI (Normalized Difference Vegetation Index) of RapidEye and an RVI of C-band Radarsat-2, we demonstrated that the proposed FVI has higher separability in different vegetation types than only with OVI and RVI. Also, the experimental results show that the proposed index not only has information on the vegetation greenness of the NDVI, but also has information on the canopy structure of the RVI. Based on this preliminary result, since the vegetation monitoring is more detailed, it could be possible in various application fields; this synergistic FVI will be further developed in the future.

A Study on the Appropriateness as Organic Matters Indicator and the Distribution of Chemical Oxygen Demand and Total Organic Carbon in Masan Bay, Korea (마산만 해수 중 화학적산소요구량과 총유기탄소 분포 특성 및 유기물 지표로서의 적절성 검토)

  • PARK, MI-OK;LEE, YONG-WOO;CHO, SEONG-AH;KIM, HYE-MI;PARK, JUN-KUN;KIM, SUNG-GIL;KIM, SEONG-SOO;LEE, SUK MO
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.26 no.2
    • /
    • pp.82-95
    • /
    • 2021
  • We investigated the temporal and spatial distribution characteristics of chemical oxygen demand (COD) and total organic carbon (TOC) in all 13 locations of Masan Bay from February to November in 2015. The COD and TOC contents were high during the June-August period when the pollution load increased. In particular, the concentrations of COD and TOC were about twice as high in the surface water as in the bottom water. In spatial distribution, the COD and TOC concentrations at the inner bay were about twice as high as those of the outer bay in Masan Bay. As a result of estimating the oxidation efficiency of COD from the surface layer of Masan Bay in 2015 based on the theoretical oxygen demand (TOD), it was at the level of about 23%. Due to the low oxidation efficiency of COD, there is a risk that the organic matter in Masan Bay will be somewhat underestimated. Therefore, for quantitative analysis of organic matter, COD and TOC analyses need to be combined.

Optimal Growth Model of the Cochlodinium Polykrikoides (Cochlodinium Polykrikoides 최적 성장모형)

  • Cho, Hong-Yeon;Cho, Beom Jun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.4
    • /
    • pp.217-224
    • /
    • 2014
  • Cochlodinium polykrikoides is a typical harmful algal species which generates the red-tide in the coastal zone, southern Korea. Accurate algal growth model can be established and then the prediction of the red-tide occurrence using this model is possible if the information on the optimal growth model parameters are available because it is directly related between the red-tide occurrence and the rapid algal bloom. However, the limitation factors on the algal growth, such as light intensity, water temperature, salinity, and nutrient concentrations, are so diverse and also the limitation function types are diverse. Thus, the study on the algal growth model development using the available laboratory data set on the growth rate change due to the limitation factors are relatively very poor in the perspective of the model. In this study, the growth model on the C. polykrikoides are developed and suggested as the optimal model which can be used as the element model in the red-tide or ecological models. The optimal parameter estimation and an error analysis are carried out using the available previous research results and data sets. This model can be used for the difference analysis between the lab. condition and in-situ state because it is an optimal model for the lab. condition. The parameter values and ranges also can be used for the model calibration and validation using the in-situ monitoring environmental and algal bloom data sets.

Seasonal Changes of Zooplankton Distribution with Environmental Factors in Lake Jinyang (진양호 환경요인과 동물플랑크톤 군집 동태)

  • Yoon, Jong-Su;Jeong, Hyun-Gi;Kwon, Young-Ho;Shin, Chan-Ki;Hwang, Dong-Jin
    • Journal of environmental and Sanitary engineering
    • /
    • v.23 no.4
    • /
    • pp.45-54
    • /
    • 2008
  • Our study indicates the zooplankton abundance with characteristics of water column and the vertical distribution in Lake Jinyang, South Korea. Seasonal changes of zooplankton community are determined by environmental parameters like water temperature, pH, dissolved oxygen, suspended solids and chlorophyll a. In lake Jinyang, this study showed that the zooplankton abundance in transition zone(St.1, St.2) was higher density than in lacustrine zone(St.3). Rotifers were dominant zooplankton and among them, Polyarthra spp., Keratella spp. and Nauplli(Copepoda) were common. But Cladoceran showed the low density. During survey period, zooplankton abundance with vertical distribution in surface layer(epilimnion) was higher than in bottom layer(hypolimninon). Zooplankton densities in Surface and middle layer showed positive relationship with water temperature and the densities in bottom layer(hypolimnion) showed positive relationship with chlorophyll a. Our assumption in spite of the short term study are supported by the facts that increase of temperature driven by climate change more maintains the thermocline duration by the summer temperature stratification. Thus the results suggest that the climate changes are an important source of changing zooplankton community feeding phytoplankton. So the zooplankton should be monitoring by the ecological management of Lake Jinyang to cope with climate changes like flood plain or drought.

Modeling Species Distributions to Predict Seasonal Habitat Range of Invasive Fish in the Urban Stream via Environmental DNA

  • Kang, Yujin;Shin, Wonhyeop;Yun, Jiweon;Kim, Yonghwan;Song, Youngkeun
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • v.3 no.1
    • /
    • pp.54-65
    • /
    • 2022
  • Species distribution models are a useful tool for predicting future distribution and establishing a preemptive response of invasive species. However, few studies considered the possibility of habitat for the aquatic organism and the number of target sites was relatively small compared to the area. Environmental DNA (eDNA) is the emerging tool as the methodology obtaining the bulk of species presence data with high detectability. Thus, this study applied eDNA survey results of Micropterus salmoides and Lepomis macrochirus to species distribution modeling by seasons in the Anyang stream network. Maximum Entropy (MaxEnt) model evaluated that both species extended potential distribution area in October compared to July from 89.1% (12,110,675 m2) to 99.3% (13,625,525 m2) for M. salmoides and 76.6% (10,407,350 m2) to 100% (13,724,225 m2) for L. macrochirus. The prediction value by streams was varied according to species and seasons. Also, models elucidate the significant environmental variables which affect the distribution by seasons and species. Our results identified the potential of eDNA methodology as a way to retrieve species data effectively and use data for building a model.

A Knowledge-based Approach for the Estimation of Effective Sampling Station Frequencies in Benthic Ecological Assessments (지식기반적 방법을 활용한 저서생태계 평가의 유효 조사정점 개수 산정)

  • Yoo, Jae-Won;Kim, Chang-Soo;Jung, Hoe-In;Lee, Yong-Woo;Lee, Man-Woo;Lee, Chang-Gun;Jin, Sung-Ju;Maeng, Jun-Ho;Hong, Jae-Sang
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.16 no.3
    • /
    • pp.147-154
    • /
    • 2011
  • Decision making in Environmental Impact Assessment (EIA) and Consultation on the Coastal Area Utilization (CCAU) is footing on the survey reports, thus requires concrete and accurate information on the natural habitats. In spite of the importance of reporting the ecological quality and status of habitats, the accumulated knowledge and recent techniques in ecology such as the use of investigated cases and indicators/indices have not been utilized in evaluation processes. Even the EIA report does not contain sufficient information required in a decision making process for conservation and development. In addition, for CCAU, sampling efforts were so limited that only two or a few stations were set in most study cases. This hampers transferring key ecological information to both specialist review and decision making processes. Hence, setting the effective number of sampling stations can be said as a prior step for better assessment. We introduced a few statistical techniques to determine the number of sampling stations in macrobenthos surveys. However, the application of the techniques requires a preliminary study that cannot be performed under the current assessment frame. An analysis of the spatial configuration of sampling stations from 19 previous studies was carried out as an alternative approach, based on the assumption that those configurations reported in scientific journal contribute to successful understanding of the ecological phenomena. The distance between stations and number of sampling stations in a $4{\times}4$ km unit area were calculated, and the medians of each parameter were 2.3 km, and 3, respectively. For each study, approximated survey area (ASA, $km^2$) was obtained by using the number of sampling stations in a unit area (NSSU) and total number of sampling stations (TNSS). To predict either appropriate ASA or NSSU/TNSS, we found and suggested statistically significant functional relationship among ASA, survey purpose and NSSU. This empirical approach will contribute to increasing sampling effort in a field survey and communicating with reasonable data and information in EIA and CCAU.

Analysis of Significance between SWMM Computer Simulation and Artificial Rainfall on Rainfall Runoff Delay Effects of Vegetation Unit-type LID System (식생유니트형 LID 시스템의 우수유출 지연효과에 대한 SWMM 전산모의와 인공강우 모니터링 간의 유의성 분석)

  • Kim, Tae-Han;Choi, Boo-Hun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.48 no.3
    • /
    • pp.34-44
    • /
    • 2020
  • In order to suggest performance analysis directions of ecological components based on a vegetation-based LID system model, this study seeks to analyze the statistical significance between monitoring results by using SWMM computer simulation and rainfall and run-off simulation devices and provide basic data required for a preliminary system design. Also, the study aims to comprehensively review a vegetation-based LID system's soil, a vegetation model, and analysis plans, which were less addressed in previous studies, and suggest a performance quantification direction that could act as a substitute device-type LID system. After monitoring artificial rainfall for 40 minutes, the test group zone and the control group zone recorded maximum rainfall intensity of 142.91mm/hr. (n=3, sd=0.34) and 142.24mm/hr. (n=3, sd=0.90), respectively. Compared to a hyetograph, low rainfall intensity was re-produced in 10-minute and 50-minute sections, and high rainfall intensity was confirmed in 20-minute, 30-minute, and 40-minute sections. As for rainwater run-off delay effects, run-off intensity in the test group zone was reduced by 79.8% as it recorded 0.46mm/min at the 50-minute point when the run-off intensity was highest in the control group zone. In the case of computer simulation, run-off intensity in the test group zone was reduced by 99.1% as it recorded 0.05mm/min at the 50-minute point when the run-off intensity was highest. The maximum rainfall run-off intensity in the test group zone (Dv=30.35, NSE=0.36) recorded 0.77mm/min and 1.06mm/min in artificial rainfall monitoring and SWMM computer simulation, respectively, at the 70-minute point in both cases. Likewise, the control group zone (Dv=17.27, NSE=0.78) recorded 2.26mm/min and 2.38mm/min, respectively, at the 50-minutes point. Through statistical assessing the significance between the rainfall & run-off simulating systems and the SWMM computer simulations, this study was able to suggest a preliminary design direction for the rainwater run-off reduction performance of the LID system applied with single vegetation. Also, by comprehensively examining the LID system's soil and vegetation models, and analysis methods, this study was able to compile parameter quantification plans for vegetation and soil sectors that can be aligned with a preliminary design. However, physical variables were caused by the use of a single vegetation-based LID system, and follow-up studies are required on algorithms for calibrating the statistical significance between monitoring and computer simulation results.