DOI QR코드

DOI QR Code

Dikkopf-1 promotes matrix mineralization of osteoblasts by regulating Ca+-CAMK2A- CREB1 pathway

  • Hyosun, Park (Hanyang University Institute for Rheumatology Research) ;
  • Sungsin, Jo (Hanyang University Institute for Rheumatology Research) ;
  • Mi-Ae, Jang (Department of Laboratory Medicine and Genetics, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine) ;
  • Sung Hoon, Choi (Department of Orthopedic Surgery, Hanyang University Seoul Hospital) ;
  • Tae-Hwan, Kim (Hanyang University Institute for Rheumatology Research)
  • Received : 2022.06.23
  • Accepted : 2022.10.07
  • Published : 2022.12.31

Abstract

Dickkopf-1 (DKK1) is a secreted protein that acts as an antagonist of the canonical WNT/β-catenin pathway, which regulates osteoblast differentiation. However, the role of DKK1 on osteoblast differentiation has not yet been fully clarified. Here, we investigate the functional role of DKK1 on osteoblast differentiation. Primary osteoprogenitor cells were isolated from human spinal bone tissues. To examine the role of DKK1 in osteoblast differentiation, we manipulated the expression of DKK1, and the cells were differentiated into mature osteoblasts. DKK1 overexpression in osteoprogenitor cells promoted matrix mineralization of osteoblast differentiation but did not promote matrix maturation. DKK1 increased Ca+ influx and activation of the Ca+/calmodulin-dependent protein kinase II Alpha (CAMK2A)-cAMP response element-binding protein 1 (CREB1) and increased translocation of p-CREB1 into the nucleus. In contrast, stable DKK1 knockdown in human osteosarcoma cell line SaOS2 exhibited reduced nuclear translocation of p-CREB1 and matrix mineralization. Overall, we suggest that manipulating DKK1 regulates the matrix mineralization of osteoblasts by Ca+-CAMK2A-CREB1, and DKK1 is a crucial gene for bone mineralization of osteoblasts.

Keywords

Acknowledgement

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (2019 R1A2C2004214, 2020R1A2C1102386, and 2021R1A6A1A03038899).

References

  1. Eriksen EF (2010) Cellular mechanisms of bone remodeling. Rev Endocr Metab Disord 11, 219-227 https://doi.org/10.1007/s11154-010-9153-1
  2. Florencio-Silva R, Sasso GR, Sasso-Cerri E, Simoes MJ and Cerri PS (2015) Biology of bone tissue: structure, function, and factors that influence bone cells. Biomed Res Int 2015, 421746
  3. Hashimoto A, Yamaguchi Y, Chiu LD et al (2015) Time-lapse Raman imaging of osteoblast differentiation. Sci Rep 5, 12529
  4. Kulterer B, Friedl G, Jandrositz A et al (2007) Gene expression profiling of human mesenchymal stem cells derived from bone marrow during expansion and osteoblast differentiation. BMC Genomics 8, 70
  5. Yang CM, Ji S, Li Y, Fu LY, Jiang T and Meng FD (2017) beta-Catenin promotes cell proliferation, migration, and invasion but induces apoptosis in renal cell carcinoma. Onco Targets Ther 10, 711-724 https://doi.org/10.2147/OTT.S117933
  6. Tan SH, Senarath-Yapa K, Chung MT, Longaker MT, Wu JY and Nusse R (2014) Wnts produced by Osterix-expressing osteolineage cells regulate their proliferation and differentiation. Proc Natl Acad Sci U S A 111, E5262-5271
  7. Chae WJ and Bothwell ALM (2018) Canonical and non-canonical wnt signaling in immune cells. Trends Immunol 39, 830-847 https://doi.org/10.1016/j.it.2018.08.006
  8. Harb J, Lin PJ and Hao J (2019) Recent development of wnt signaling pathway inhibitors for cancer therapeutics. Curr Oncol Rep 21, 12
  9. Sheng M, Thompson MA and Greenberg ME (1991) CREB: a Ca(2+)-regulated transcription factor phosphorylated by calmodulin-dependent kinases. Science 252, 1427-1430 https://doi.org/10.1126/science.1646483
  10. Ding N, Lu Y, Cui H et al (2020) Physalin D inhibits RANKL-induced osteoclastogenesis and bone loss via regulating calcium signaling. BMB Rep 53, 154-159 https://doi.org/10.5483/BMBRep.2020.53.3.147
  11. Mantamadiotis T, Papalexis N and Dworkin S (2012) CREB signalling in neural stem/progenitor cells: recent developments and the implications for brain tumour biology. Bioessays 34, 293-300 https://doi.org/10.1002/bies.201100133
  12. Wang H, Xu J, Lazarovici P, Quirion R and Zheng W (2018) cAMP Response Element-Binding Protein (CREB): a possible signaling molecule link in the pathophysiology of schizophrenia. Front Mol Neurosci 11, 255
  13. Niehrs C (2006) Function and biological roles of the Dickkopf family of Wnt modulators. Oncogene 25, 7469-7481 https://doi.org/10.1038/sj.onc.1210054
  14. Mao B, Wu W, Davidson G et al (2002) Kremen proteins are Dickkopf receptors that regulate Wnt/beta-catenin signalling. Nature 417, 664-667 https://doi.org/10.1038/nature756
  15. Lin L, Qiu Q, Zhou N et al (2016) Dickkopf-1 is involved in BMP9-induced osteoblast differentiation of C3H10T1/2 mesenchymal stem cells. BMB Rep 49, 179-184 https://doi.org/10.5483/BMBRep.2016.49.3.206
  16. Jo S, Yoon S, Lee SY et al (2020) DKK1 induced by 1,25d3 is required for the mineralization of osteoblasts. Cells 9, 236-250 https://doi.org/10.3390/cells9010236
  17. MacDonald BT, Joiner DM, Oyserman SM et al (2007) Bone mass is inversely proportional to Dkk1 levels in mice. Bone 41, 331-339 https://doi.org/10.1016/j.bone.2007.05.009
  18. Li X, Liu P, Liu W et al (2005) Dkk2 has a role in terminal osteoblast differentiation and mineralized matrix formation. Nat Genet 37, 945-952 https://doi.org/10.1038/ng1614
  19. Nam B, Park H, Lee YL et al (2020) TGFbeta1 suppressed matrix mineralization of osteoblasts differentiation by regulating SMURF1-C/EBPbeta-DKK1 axis. Int J Mol Sci 21, 1-10
  20. Komori T (2006) Regulation of osteoblast differentiation by transcription factors. J Cell Biochem 99, 1233-1239 https://doi.org/10.1002/jcb.20958
  21. Lee MH, Kim YJ, Kim HJ et al (2003) BMP-2-induced Runx2 expression is mediated by Dlx5, and TGF-beta 1 opposes the BMP-2-induced osteoblast differentiation by suppression of Dlx5 expression. J Biol Chem 278, 34387-34394 https://doi.org/10.1074/jbc.M211386200
  22. Bennett CN, Longo KA, Wright WS et al (2005) Regulation of osteoblastogenesis and bone mass by Wnt10b. Proc Natl Acad Sci U S A 102, 3324-3329 https://doi.org/10.1073/pnas.0408742102
  23. Day TF, Guo X, Garrett-Beal L and Yang Y (2005) Wnt/betacatenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev Cell 8, 739-750 https://doi.org/10.1016/j.devcel.2005.03.016
  24. Guo J, Liu M, Yang D et al (2010) Suppression of Wnt signaling by Dkk1 attenuates PTH-mediated stromal cell response and new bone formation. Cell Metab 11, 161-171 https://doi.org/10.1016/j.cmet.2009.12.007
  25. Butler JS, Murray DW, Hurson CJ, O'Brien J, Doran PP and O'Byrne JM (2011) The role of Dkk1 in bone mass regulation: correlating serum Dkk1 expression with bone mineral density. J Orthop Res 29, 414-418 https://doi.org/10.1002/jor.21260
  26. Tian E, Zhan F, Walker R et al (2003) The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N Engl J Med 349, 2483-2494 https://doi.org/10.1056/NEJMoa030847
  27. Pawar NM and Rao P (2018) Secreted frizzled related protein 4 (sFRP4) update: a brief review. Cell Signal 45, 63-70 https://doi.org/10.1016/j.cellsig.2018.01.019
  28. Nakanishi R, Akiyama H, Kimura H et al (2008) Osteoblast-targeted expression of Sfrp4 in mice results in low bone mass. J Bone Miner Res 23, 271-277 https://doi.org/10.1359/jbmr.071007
  29. Haraguchi R, Kitazawa R, Mori K et al (2016) sFRP4-dependent Wnt signal modulation is critical for bone remodeling during postnatal development and age-related bone loss. Sci Rep 6, 25198
  30. Guan H, Zhang Y, Gao S et al (2018) Differential patterns of secreted frizzled-related protein 4 (SFRP4) in adipocyte differentiation: adipose depot specificity. Cell Physiol Biochem 46, 2149-2164 https://doi.org/10.1159/000489545
  31. Beresford JN, Bennett JH, Devlin C, Leboy PS and Owen ME (1992) Evidence for an inverse relationship between the differentiation of adipocytic and osteogenic cells in rat marrow stromal cell cultures. J Cell Sci 102(Pt 2), 341-351 https://doi.org/10.1242/jcs.102.2.341
  32. Gallagher JA, Gundle R and Beresford JN (1996) Isolation and culture of bone-forming cells (osteoblasts) from human bone. Methods Mol Med 2, 233-262 https://doi.org/10.1385/0-89603-335-X:233
  33. Wang K, Zhang Y, Li X et al (2008) Characterization of the Kremen-binding site on Dkk1 and elucidation of the role of Kremen in Dkk-mediated Wnt antagonism. J Biol Chem 283, 23371-23375
  34. Jo S, Won EJ, Kim MJ et al (2021) STAT3 phosphorylation inhibition for treating inflammation and new bone formation in ankylosing spondylitis. Rheumatology (Oxford) 60, 3923-3935 https://doi.org/10.1093/rheumatology/keaa846
  35. Jo S, Lee JK, Han J et al (2018) Identification and characterization of human bone-derived cells. Biochem Biophys Res Commun 495, 1257-1263 https://doi.org/10.1016/j.bbrc.2017.11.155
  36. Jo S, Lee YY, Han J et al (2019) CCAAT/enhancer-binding protein beta (C/EBPbeta) is an important mediator of 1,25 dihydroxyvitamin D3 (1,25D3)-induced receptor activator of nuclear factor kappa-B ligand (RANKL) expression in osteoblasts. BMB Rep 52, 391-396 https://doi.org/10.5483/bmbrep.2019.52.6.166