DOI QR코드

DOI QR Code

Mettl14 mutation restrains liver regeneration by attenuating mitogens derived from non-parenchymal liver cells

  • Insook, Yang (Laboratory of Developmental Biology and Genomics, College of Veterinary Medicine, Seoul National University) ;
  • Seung Yeon, Oh (Korea Mouse Phenotyping Center (KMPC), Seoul National University) ;
  • Suin, Jang (Korea Mouse Phenotyping Center (KMPC), Seoul National University) ;
  • Il Yong, Kim (Laboratory of Developmental Biology and Genomics, College of Veterinary Medicine, Seoul National University) ;
  • You Me, Sung (Korea Mouse Phenotyping Center (KMPC), Seoul National University) ;
  • Je Kyung, Seong (Laboratory of Developmental Biology and Genomics, College of Veterinary Medicine, Seoul National University)
  • Received : 2022.09.13
  • Accepted : 2022.10.24
  • Published : 2022.12.31

Abstract

Liver regeneration is a well-known systemic homeostatic phenomenon. The N6-methyladenosine (m6A) modification pathway has been associated with liver regeneration and hepatocellular carcinoma. m6A methyltransferases, such as methyltransferase 3 (METTL3) and methyltransferase 14 (METTL14), are involved in the hepatocyte-specific-regenerative pathway. To illustrate the role of METTL14, secreted from non-parenchymal liver cells, in the initiation phase of liver regeneration, we performed 70% partial hepatectomy (PH) in Mettl14 heterozygous (HET) and wild-type (WT) mice. Next, we analyzed the ratio of liver weight to body weight and the expression of mitogenic stimulators derived from non-parenchymal liver cells. Furthermore, we evaluated the expression of cell cycle-related genes and the hepatocyte proliferation rate via MKI67-immunostaining. During regeneration after PH, the weight ratio was lower in Mettl14 HET mice compared to WT mice. The expressions of hepatocyte growth factor (HGF) and tumor necrosis factor (TNF)-α, mitogens derived from non-parenchymal liver cells that stimulate the cell cycle, as well as the expressions of cyclin B1 and D1, which regulate the cell cycle, and the number of MKI67-positive cells, which indicate proliferative hepatocyte in the late G1-M phase, were significantly reduced in Mettl14 HET mice 72 h after PH. Our findings demonstrate that global Mettl14 mutation may interrupt the homeostasis of liver regeneration after an acute injury like PH by restraining certain mitogens, such as HGF and TNF-α, derived from sinusoidal endothelial cells, stellate cells, and Kupffer cells. These results provide new insights into the role of METTL14 in the clinical treatment strategies of liver disease.

Keywords

Acknowledgement

This research was supported by Korea Mouse Phenotyping Project (2013M3A9D5072550) of the National Research Foundation funded by the Ministry of Science and ICT (2012M3A9D1054622) and partially supported by the Brain Korea 21 Plus Program and the Research Institute for Veterinary Science of Seoul National University.

References

  1. Michalopoulos GK (2021) Novel insights into liver homeostasis and regeneration. Nat Rev Gastroenterol Hepatol 18, 369-370 https://doi.org/10.1038/s41575-021-00454-0
  2. Kurinna S and Barton MC (2011) Cascades of transcription regulation during liver regeneration. Int J Biochem Cell Biol 43, 189-197 https://doi.org/10.1016/j.biocel.2010.03.013
  3. Michalopoulos GK (2013) Principles of liver regeneration and growth homeostasis. Compr Physiol 3, 485-513 https://doi.org/10.1002/cphy.c120014
  4. Ma JZ, Yang F, Zhou CC et al (2017) METTL14 suppresses the metastatic potential of hepatocellular carcinoma by modulating N6-methyladenosine-dependent primary MicroRNA processing. Hepatology 65, 529-543 https://doi.org/10.1002/hep.28885
  5. Meng J, Zhao Z, Xi Z et al (2022) Liver-specific Mettl3 ablation delays liver regeneration in mice. Genes Dis 9, 697-704 https://doi.org/10.1016/j.gendis.2020.11.002
  6. Cao X, Shu Y, Chen Y et al (2021) Mettl14-mediated m6a modification facilitates liver regeneration by maintaining endoplasmic reticulum homeostasis. Cell Mol Gastroenterol Hepatol 12, 633-651
  7. Jiang X, Liu B, Nie Z et al (2021) The role of m6A modification in the biological functions and diseases. Signal Transduct Target Ther 6, 74
  8. Lu J, Qian J, Yin S et al (2020) Mechanisms of RNA N6-methyladenosine in hepatocellular carcinoma: from the perspectives of etiology. Front Oncol 10, 1105
  9. Lin S and Gregory RI (2014) Methyltransferases modulate RNA stability in embryonic stem cells. Nat Cell Biol 16, 129-131 https://doi.org/10.1038/ncb2914
  10. Shulman Z and Stern-Ginossar N (2020) The RNA modification N6-methyladenosine as a novel regulator of the immune system. Nat Immunol 21, 501-512 https://doi.org/10.1038/s41590-020-0650-4
  11. Hua W, Zhao Y, Jin X et al (2018) METTL3 promotes ovarian carcinoma growth and invasion through the regulation of AXL translation and epithelial to mesenchymal transition. Gynecol Oncol 151, 356-365 https://doi.org/10.1016/j.ygyno.2018.09.015
  12. Yang X, Zhang S, He C et al (2020) METTL14 suppresses proliferation and metastasis of colorectal cancer by downregulating oncogenic long non-coding RNA XIST. Mol Cancer 19, 46
  13. Lin Z, Hsu PJ, Xing X et al (2017) Mettl3-/Mettl14-mediated mRNA N6-methyladenosine modulates murine spermatogenesis. Cell Res 27, 1216-1230 https://doi.org/10.1038/cr.2017.117
  14. Fu Y, Dominissini D, Rechavi G et al (2014) Gene expression regulation mediated through reversible m6A RNA methylation. Nat Rev Genet 15, 293-306 https://doi.org/10.1038/nrg3724
  15. Jia G, Fu Y and He C (2013) Reversible RNA adenosine methylation in biological regulation. Trends Genet 29, 108-115 https://doi.org/10.1016/j.tig.2012.11.003
  16. Malik R and Hodgson H (2002) The relationship between the thyroid gland and the liver. QJM 95, 559-569 https://doi.org/10.1093/qjmed/95.9.559
  17. Fausto N, Campbell JS and Riehle KJ (2006) Liver regeneration. Hepatology 43, S45-53 https://doi.org/10.1002/hep.20969
  18. Akerman P, Cote P, Yang SQ et al (1992) Antibodies to tumor necrosis factor-alpha inhibit liver regeneration after partial hepatectomy. Am J Physiol Gastrointest Liver Physiol 263, G579-G585 https://doi.org/10.1152/ajpgi.1992.263.4.g579
  19. Cressman DE, Greenbaum LE, DeAngelis RA et al (1996) Liver failure and defective hepatocyte regeneration in interleukin-6-deficient mice. Science 274, 1379-1383 https://doi.org/10.1126/science.274.5291.1379
  20. Cruise JL, Houck KA and Michalopoulos GK (1985) Induction of DNA synthesis in cultured rat hepatocytes through stimulation of α1 adrenoreceptor by norepinephrine. Science 227, 749-751 https://doi.org/10.1126/science.2982212
  21. Michalopoulos GK and DeFrances M (2005) Liver regeneration. Adv Biochem Eng Biotechnol 93, 101-134
  22. Higgins GM and Anderson RM (1931) Experimental pathology of the liver. I. Restoration of the white rat following partial surgical removal. Arch Path 12, 186-202
  23. Mitchell C and Willenbring H (2008) A reproducible and well-tolerated method for 2/3 partial hepatectomy in mice. Nat Protoc 3, 1167-1170 https://doi.org/10.1038/nprot.2008.80
  24. Yang I, Son Y, Shin JH et al (2022) Ahnak depletion accelerates liver regeneration by modulating the TGF-beta/Smad signaling pathway. BMB Rep 55, 401-406 https://doi.org/10.5483/BMBRep.2022.55.8.071
  25. Michalopoulos GK (2007) Liver regeneration. J Cell Physiol 213, 286-300 https://doi.org/10.1002/jcp.21172
  26. Olsen PS, Poulsen SS and Kirkegaard P (1985) Adrenergic effects on secretion of epidermal growth factor from Brunner's glands. Gut 26, 920-927 https://doi.org/10.1136/gut.26.9.920
  27. Fausto N (2000) Liver regeneration. J Hepatol 32, 19-31 https://doi.org/10.1016/S0168-8278(00)80412-2
  28. Mullany LK, White P, Hanse EA et al (2008) Distinct proliferative and transcriptional effects of the D-type cyclins in vivo. Cell Cycle 7, 2215-2224 https://doi.org/10.4161/cc.7.14.6274
  29. Gerlach C, Sakkab DY, Scholzen T et al (1997) Ki-67 expression during rat liver regeneration after partial hepatectomy. Hepatology 26, 573-578 https://doi.org/10.1002/hep.510260307
  30. Marongiu F, Marongiu M, Contini A et al (2017) Hyperplasia vs hypertrophy in tissue regeneration after extensive liver resection. World J Gastroenterol 23, 1764-1770 https://doi.org/10.3748/wjg.v23.i10.1764
  31. Li J, Zhu L, Shi Y et al (2019) m6A demethylase FTO promotes hepatocellular carcinoma tumorigenesis via mediating PKM2 demethylation. Am J Transl Res 11, 6084-6092
  32. Kim YJ, Kim HJ, Lee WJ et al (2020) A comparison of the metabolic effects of treadmill and wheel running exercise in mouse model. Lab Anim Res 36, 3