DOI QR코드

DOI QR Code

Acid sphingomyelinase inhibition improves motor behavioral deficits and neuronal loss in an amyotrophic lateral sclerosis mouse model

  • Byung Jo, Choi (KNU Alzheimer's Disease Research Institute, Kyungpook National University) ;
  • Kang Ho, Park (KNU Alzheimer's Disease Research Institute, Kyungpook National University) ;
  • Min Hee, Park (KNU Alzheimer's Disease Research Institute, Kyungpook National University) ;
  • Eric Jinsheng, Huang (Department of Pathology, University of California San Francisco) ;
  • Seung Hyun, Kim (Department of Neurology, Hanyang University College of Medicine) ;
  • Jae-sung, Bae (KNU Alzheimer's Disease Research Institute, Kyungpook National University) ;
  • Hee Kyung, Jin (KNU Alzheimer's Disease Research Institute, Kyungpook National University)
  • Received : 2022.09.13
  • Accepted : 2022.10.07
  • Published : 2022.12.31

Abstract

Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disease characterized by the degeneration of motor neurons in the spinal cord. Main symptoms are manifested as weakness, muscle loss, and muscle atrophy. Some studies have reported that alterations in sphingolipid metabolism may be intimately related to neurodegenerative diseases, including ALS. Acid sphingomyelinase (ASM), a sphingolipid-metabolizing enzyme, is considered an important mediator of neurodegenerative diseases. Herein, we show that ASM activity increases in samples from patients with ALS and in a mouse model. Moreover, genetic inhibition of ASM improves motor function impairment and spinal neuronal loss in an ALS mouse model. Therefore, these results suggest the role of ASM as a potentially effective target and ASM inhibition may be a possible therapeutic approach for ALS.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (2020R1A2C3006875, 2020R1A2C3006734). This research was also supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare and MSIT, Republic of Korea (HU20C0345).

References

  1. Rowland LP and Shneider NA (2001) Amyotrophic lateral sclerosis. New Engl J Med 344, 1688-1700  https://doi.org/10.1056/NEJM200105313442207
  2. Chio A, Logroscino G, Hardiman O et al (2009) Prognostic factors in ALS: a critical review. Amyotroph Lateral Scler 10, 310-323  https://doi.org/10.3109/17482960802566824
  3. Hardiman O, Al-Chalabi A, Chio A et al (2017) Amyotrophic lateral sclerosis. Nat Rev Dis Primers 3, 17071 
  4. Zou ZY, Zhou ZR, Che CH, Liu CY, He RL and Huang HP (2017) Genetic epidemiology of amyotrophic lateral sclerosis: a systematic review and meta-analysis. J Neurol Neurosurg Psychiatr 88, 540-549  https://doi.org/10.1136/jnnp-2016-315018
  5. Boylan K (2015) Familial ALS. Neurol Clin 33, 807-830  https://doi.org/10.1016/j.ncl.2015.07.001
  6. Mejzini R, Flynn LL, Pitout IL, Fletcher S, Wilton SD and Akkari PA (2019) ALS genetics, mechanisms, and therapeutics: where are we now? Front Neurosci 13, 1310 
  7. Kim G, Gautier O, Tassoni-Tsuchida E, Ma XR and Gitler AD (2020) ALS genetics: gains, losses, and implications for future therapies. Neuron 108, 822-842  https://doi.org/10.1016/j.neuron.2020.08.022
  8. Vance C, Rogelj B, Hortobagyi T et al (2009) Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science 323, 1208-1211  https://doi.org/10.1126/science.1165942
  9. Rosen DR, Siddique T, Patterson D et al (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362, 59 
  10. Oakes JA, Davies MC and Collins MO (2017) TBK1: a new player in ALS linking autophagy and neuroinflammation. Mol Brain 10, 5 
  11. Sreedharan J, Blair IP, Tripathi VB et al (2008) TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 319, 1668-1672  https://doi.org/10.1126/science.1154584
  12. Renton AE, Majounie E, Waite A et al (2011) A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72, 257-268  https://doi.org/10.1016/j.neuron.2011.09.010
  13. Schissel SL, Schuchman EH, Williams KJ and Tabas I (1996) Zn2+-stimulatedZn2+-stimulated sphingomyelinase is secreted by many cell types and is a product of the acid sphingomyelinase gene. J Biol Chem 271, 18431-18436  https://doi.org/10.1074/jbc.271.31.18431
  14. Kornhuber J, Rhein C, Muller CP and Muhle C (2015) Secretory sphingomyelinase in health and disease. Biol Chem 396, 707-736 
  15. Lee JK, Jin HK, Park MH et al (2014) Acid sphingomyelinase modulates the autophagic process by controlling lysosomal biogenesis in Alzheimer's disease. J Exp Med 211, 1551-1570  https://doi.org/10.1084/jem.20132451
  16. Ong WY, Herr DR, Farooqui T, Ling EA and Farooqui AA (2015) Role of sphingomyelinases in neurological disorders. Expert Opin Ther Targets 19, 1725-1742  https://doi.org/10.1517/14728222.2015.1071794
  17. Park MH, Jin HK and Bae JS (2020) Potential therapeutic target for aging and age-related neurodegenerative diseases: the role of acid sphingomyelinase. Exp Mol Med 52, 380-389  https://doi.org/10.1038/s12276-020-0399-8
  18. Jenkins RW, Canals D and Hannun YA (2009) Roles and regulation of secretory and lysosomal acid sphingomyelinase. Cell Signal 21, 836-846  https://doi.org/10.1016/j.cellsig.2009.01.026
  19. Xiang Li, Erich Gulbins and Yang Zhang (2012) Oxidative stress triggers Ca-dependent lysosome trafficking and activation of acid sphingomyelinase. Cell Physiol Biochem 30, 815-826 
  20. Smith EL and Schuchman EH (2008) The unexpected role of acid sphingomyelinase in cell death and the pathophysiology of common diseases. FASEB J 22, 3419-3431  https://doi.org/10.1096/fj.08-108043
  21. Park MH, Lee JY, Park KH et al (2018) Vascular and neurogenic rejuvenation in aging mice by modulation of ASM. Neuron 100, 167-182  https://doi.org/10.1016/j.neuron.2018.09.010
  22. Qiu H, Lee S, Shang Y et al (2014) ALS-associated mutation FUS-R521C causes DNA damage and RNA splicing defects. J Clin Invest 124, 981-999  https://doi.org/10.1172/JCI72723
  23. Mitchell JC, McGoldrick P, Vance C et al (2013) Overexpression of human wild-type FUS causes progressive motor neuron degeneration in an age- and dose-dependent fashion. Acta Neuropathol 125, 273-288  https://doi.org/10.1007/s00401-012-1043-z
  24. Sharma A, Lyashchenko AK, Lu L et al (2016) ALS-associated mutant FUS induces selective motor neuron degeneration through toxic gain of function. Nat Commun 7, 10465 
  25. Hewitt C, Kirby J, Highley JR et al (2010) Novel FUS/TLS mutations and pathology in familial and sporadic amyotrophic lateral sclerosis. Arch Neurol 67, 455-461  https://doi.org/10.1001/archneurol.2010.52
  26. Cutler RG, Pedersen WA, Camandola S, Rothstein JD and Mattson MP (2002) Evidence that accumulation of ceramides and cholesterol esters mediates oxidative stress-induced death of motor neurons in amyotrophic lateral sclerosis. Ann Neurol 52, 448-457  https://doi.org/10.1002/ana.10312
  27. Arenas A, Kuang L, Zhang J, Kingren MS and Zhu H (2021) FUS regulates autophagy by mediating the transcription of genes critical to the autophagosome formation. J Neurochem 157, 752-763  https://doi.org/10.1111/jnc.15281
  28. Baskoylu SN, Chapkis N, Unsal B et al (2022) Disrupted autophagy and neuronal dysfunction in C. elegans knockin models of FUS amyotrophic lateral sclerosis. Cell Rep 38, 110195 
  29. Petrov D, Mansfield C, Moussy A and Hermine O (2017) ALS clinical trials review: 20 years of failure. Are we any closer to registering a new treatment? Front Aging Neurosci 9, 68 
  30. Kornhuber J, Tripal P, Reichel M et al (2010) Functional Inhibitors of Acid Sphingomyelinase (FIASMAs): a novel pharmacological group of drugs with broad clinical applications. Cell Physiol Biochem 26, 9-20  https://doi.org/10.1159/000315101
  31. Park MH, Park KH, Choi BJ et al (2022) Discovery of a dual-action small molecule that improves neuropathological features of Alzheimer's disease mice. Proc Natl Acad Sci U S A 119, e2115082119 
  32. Horinouchi K, Erlich S, Perl DP et al (1995) Acid sphingomyelinase deficient mice: a model of types A and B Niemann-Pick disease. Nat Genet 10, 288-293  https://doi.org/10.1038/ng0795-288
  33. Shiihashi G, Ito D, Yagi T, Nihei Y, Ebine T and Suzuki N (2016) Mislocated FUS is sufficient for gain-of-toxic-function amyotrophic lateral sclerosis phenotypes in mice. Brain 139, 2380-2394  https://doi.org/10.1093/brain/aww161