DOI QR코드

DOI QR Code

Systemic TM4SF5 overexpression in ApcMin/+ mice promotes hepatic portal hypertension associated with fibrosis

  • Joohyeong, Lee (Department of Pharmacy College of Pharmacy, Seoul National University) ;
  • Eunmi, Kim (Department of Pharmacy College of Pharmacy, Seoul National University) ;
  • Min-Kyung, Kang (Department of Pharmacy College of Pharmacy, Seoul National University) ;
  • Jihye, Ryu (Department of Pharmacy College of Pharmacy, Seoul National University) ;
  • Ji Eon, Kim (Department of Pharmacy College of Pharmacy, Seoul National University) ;
  • Eun-Ae, Shin (Department of Pharmacy College of Pharmacy, Seoul National University) ;
  • Yangie, Pinanga (Department of Pharmacy College of Pharmacy, Seoul National University) ;
  • Kyung-hee, Pyo (Department of Pharmacy College of Pharmacy, Seoul National University) ;
  • Haesong, Lee (Department of Pharmacy College of Pharmacy, Seoul National University) ;
  • Eun Hae, Lee (Department of Pharmacy College of Pharmacy, Seoul National University) ;
  • Heejin, Cho (Department of Pharmacy College of Pharmacy, Seoul National University) ;
  • Jayeon, Cheon (Department of Pharmacy College of Pharmacy, Seoul National University) ;
  • Wonsik, Kim (Department of Pharmacy College of Pharmacy, Seoul National University) ;
  • Eek-Hoon, Jho (Department of Life Science, University of Seoul) ;
  • Semi, Kim (Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Jung Weon, Lee (Department of Pharmacy College of Pharmacy, Seoul National University)
  • Received : 2022.06.27
  • Accepted : 2022.08.30
  • Published : 2022.12.31

Abstract

Mutation of the gene for adenomatous polyposis coli (APC), as seen in ApcMin/+ mice, leads to intestinal adenomas and carcinomas via stabilization of β-catenin. Transmembrane 4 L six family member 5 (TM4SF5) is involved in the development of non-alcoholic fatty liver disease, fibrosis, and cancer. However, the functional linkage between TM4SF5 and APC or β-catenin has not been investigated for pathological outcomes. After interbreeding ApcMin/+ with TM4SF5-overexpressing transgenic (TgTM4SF5) mice, we explored pathological outcomes in the intestines and livers of the offspring. The intestines of 26-week-old dual-transgenic mice (ApcMin/+:TgTM4SF5) had intramucosal adenocarcinomas beyond the single-crypt adenomas in ApcMin/+ mice. Additional TM4SF5 overexpression increased the stabilization of β-catenin via reduced glycogen synthase kinase 3β (GSK3β) phosphorylation on Ser9. Additionally, the livers of the dualtransgenic mice showed distinct sinusoidal dilatation and features of hepatic portal hypertension associated with fibrosis, more than did the relatively normal livers in ApcMin/+ mice. Interestingly, TM4SF5 overexpression in the liver was positively linked to increased GSK3β phosphorylation (opposite to that seen in the colon), β-catenin level, and extracellular matrix (ECM) protein expression, indicating fibrotic phenotypes. Consistent with these results, 78-week-old TgTM4SF5 mice similarly had sinusoidal dilatation, immune cell infiltration, and fibrosis. Altogether, systemic overexpression of TM4SF5 aggravates pathological abnormalities in both the colon and the liver.

Keywords

Acknowledgement

This work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2020R1I1A1A01070020 to EMK, NRF-2021R1A6A3A01087300 to JEK, NRF-2018M3A9C8020027, NRF-2020R1A2C3008993, and NRF-2021M3A9D3024752 to JWL).

References

  1. Sveen A, Kopetz S and Lothe RA (2020) Biomarker-guided therapy for colorectal cancer: strength in complexity. Nat Rev Clin Oncol 17, 11-32 https://doi.org/10.1038/s41571-019-0241-1
  2. Wang F, Breslin SJP and Qiu W (2021) Novel oncogenes and tumor suppressor genes in hepatocellular carcinoma. Liver Res 5, 195-203 https://doi.org/10.1016/j.livres.2021.06.001
  3. Lee SA, Lee SY, Cho IH et al (2008) Tetraspanin TM4SF5 mediates loss of contact inhibition through epithelial-mesenchymal transition in human hepatocarcinoma. J Clin Invest 118, 1354-1366
  4. Ahn H-M, Ryu J, Song JM et al (2017) Anti-cancer activity of novel TM4SF5-targeting antibodies through TM4SF5 neutralization and immune cell-mediated cytotoxicity. Theranostics 7, 594-613 https://doi.org/10.7150/thno.15629
  5. Ryu J, Kim E, Kang M-K et al (2021) Differential TM4SF5-mediated SIRT1 modulation and metabolic signaling in nonalcoholic steatohepatitis progression. J Pathol 253, 55-67 https://doi.org/10.1002/path.5548
  6. Kang M, Jeong SJ, Park SY et al (2012) Antagonistic regulation of transmembrane 4 L6 family member 5 attenuates fibrotic phenotypes in CCl4 -treated mice. FEBS J 279, 625-635 https://doi.org/10.1111/j.1742-4658.2011.08452.x
  7. Sun H, Kim E, Ryu J et al (2021) TM4SF5-mediated liver malignancy involves NK cell exhaustion-like phenotypes. Cell Mol Life Sci 79, 49
  8. Ren J, Sui H, Fang F, Li Q and Li B (2019) The application of ApcMin/+ mouse model in colorectal tumor researches. J Cancer Res Clin Oncol 145, 1111-1122 https://doi.org/10.1007/s00432-019-02883-6
  9. Shih SC, Zukauskas A, Li D et al (2009) The L6 protein TM4SF1 is critical for endothelial cell function and tumor angiogenesis. Cancer Res 69, 3272-3277 https://doi.org/10.1158/0008-5472.CAN-08-4886
  10. Lee JW (2015) Transmembrane 4 L six family member 5 (TM4SF5)-mediated epithelial-mesenchymal transition in liver diseases. Int Rev Cell Mol Biol 319, 141-163 https://doi.org/10.1016/bs.ircmb.2015.06.004
  11. Powell SM, Zilz N, Beazer-Barclay Y et al (1992) APC mutations occur early during colorectal tumorigenesis. Nature 359, 235-237 https://doi.org/10.1038/359235a0
  12. Yamada Y and Mori H (2007) Multistep carcinogenesis of the colon in Apc(Min/+) mouse. Cancer Sci 98, 6-10 https://doi.org/10.1111/j.1349-7006.2006.00348.x
  13. Grill JI, Herbst A, Brandl L et al (2015) Inactivation of Itf2 promotes intestinal tumorigenesis in Apc(Min/+) mice. Biochem Biophys Res Commun 461, 249-253 https://doi.org/10.1016/j.bbrc.2015.04.009
  14. Jung YS and Park JI (2020) Wnt signaling in cancer: therapeutic targeting of Wnt signaling beyond β-catenin and the destruction complex. Exp Mol Med 52, 183-191 https://doi.org/10.1038/s12276-020-0380-6
  15. Lee H, Kim E, Shin EA et al (2022) Crosstalk between TM4SF5 and GLUT8 regulates fructose metabolism in hepatic steatosis. Mol Metab 58, 101451
  16. McConnell M and Iwakiri Y (2018) Biology of portal hypertension. Hepatol Int 12, 11-23 https://doi.org/10.1007/s12072-017-9826-x
  17. Kim S, Cho CY, Lee D et al (2018) CD133-induced TM4SF5 expression promotes sphere growth via recruitment and blocking of protein tyrosine phosphatase receptor type F (PTPRF). Cancer Lett 438, 219-231 https://doi.org/10.1016/j.canlet.2018.09.009
  18. Shakoori A, Mai W, Miyashita K et al (2007) Inhibition of GSK-3β activity attenuates proliferation of human colon cancer cells in rodents. Cancer Sci 98, 1388-1393 https://doi.org/10.1111/j.1349-7006.2007.00545.x
  19. Pal K, Cao Y, Gaisina IN et al (2014) Inhibition of GSK-3 induces differentiation and impaired glucose metabolism in renal cancer. Mol Cancer Ther 13, 285-296 https://doi.org/10.1158/1535-7163.MCT-13-0681
  20. Garcea G, Manson MM, Neal CP et al (2007) Glycogen synthase kinase-3β; a new target in pancreatic cancer? Curr Cancer Drug Targets 7, 209-215 https://doi.org/10.2174/156800907780618266
  21. Ma C, Wang J, Gao Y et al (2007) The role of glycogen synthase kinase 3β in the transformation of epidermal cells. Cancer Res 67, 7756-7764 https://doi.org/10.1158/0008-5472.CAN-06-4665
  22. Farago M, Dominguez I, Landesman-Bollag E et al (2005) Kinase-inactive glycogen synthase kinase 3β promotes Wnt signaling and mammary tumorigenesis. Cancer Res 65, 5792-5801 https://doi.org/10.1158/0008-5472.CAN-05-1021
  23. Zheng H, Saito H, Masuda S, Yang X and Takano Y (2007) Phosphorylated GSK3β-ser9 and EGFR are good prognostic factors for lung carcinomas. Anticancer Res 27, 3561-569
  24. Noe O, Filipiak L, Royfman R et al (2021) Adenomatous polyposis coli in cancer and therapeutic implications. Oncol Rev 15, 534
  25. Choi S, Lee S-A, Kwak TK et al (2009) Cooperation between integrin α5 and tetraspan TM4SF5 regulates VEGF-ediated angiogenic activity. Blood 113, 1845-1855 https://doi.org/10.1182/blood-2008-05-160671
  26. Lee SA, Kim TY, Kwak TK et al (2010) Transmembrane 4 L six family member 5 (TM4SF5) enhances migration and invasion of hepatocytes for effective metastasis. J Cell Biochem 111, 59-66
  27. Jung O, Choi YJ, Kwak TK et al (2013) The COOH-terminus of TM4SF5 in hepatoma cell lines regulates c-Src to form invasive protrusions via EGFR Tyr845 phosphorylation. Biochim Biophys Acta 1833, 629-642 https://doi.org/10.1016/j.bbamcr.2012.11.026
  28. Lee D and Lee JW (2015) Self-renewal and circulating capacities of metastatic hepatocarcinoma cells required for collaboration between TM4SF5 and CD44. BMB Rep 48, 127-128 https://doi.org/10.5483/BMBRep.2015.48.3.047
  29. Juanes MA (2020) Cytoskeletal control and Wnt signaling-PC's dual contributions in stem cell division and colorectal cancer. Cancers (Basel) 12, 3811
  30. Barzegar Behrooz A, Syahir A and Ahmad S (2018) CD133: beyond a cancer stem cell biomarker. J Drug Target 27, 257-269 https://doi.org/10.1080/1061186x.2018.1479756
  31. Ma S (2013) Biology and clinical implications of CD133(+) CD133(+) liver cancer stem cells. Exp Cell Res 319, 126-132 https://doi.org/10.1016/j.yexcr.2012.09.007
  32. Song HE LY, Kim E, Cho CY et al (2021) N-terminus-independent activation of c-Src via binding to a tetraspan (in) TM4SF5 in hepatocellular carcinoma is abolished by the TM4SF5 C-terminal peptide application. Theranostics 11, 8092-8111 https://doi.org/10.7150/thno.58739
  33. Turkson J, Bowman T, Garcia R, Caldenhoven E, De Groot RP and Jove R (1998) Stat3 activation by Src induces specific gene regulation and is required for cell transformation. Mol Cell Biol 18, 2545-2552 https://doi.org/10.1128/MCB.18.5.2545
  34. Boivin D, Labbe D, Fontaine N et al (2009) The stem cell marker CD133 (prominin-1) is phosphorylated on cytoplasmic tyrosine-828 and tyrosine-852 by Src and Fyn tyrosine kinases. Biochemistry 48, 3998-4007 https://doi.org/10.1021/bi900159d
  35. Wei Y, Jiang Y, Zou F et al (2013) Activation of PI3K/Akt pathway by CD133-p85 interaction promotes tumorigenic capacity of glioma stem cells. Proc Natl Acad Sci U S A 110, 6829-6834 https://doi.org/10.1073/pnas.1217002110
  36. Ko D, Kim E, Shin EA et al (2022) Therapeutic effects of TM4SF5-targeting chimeric and humanized monoclonal antibodies in hepatocellular and colon cancer models. Mol Ther Oncolytics 24, 452-466 https://doi.org/10.1016/j.omto.2022.01.006
  37. Kang M, Choi S, Jeong SJ et al (2012) Cross-talk between TGFβ1 and EGFR signalling pathways induces TM4SF5 expression and epithelial-mesenchymal transition. Biochem J 443, 691-700 https://doi.org/10.1042/BJ20111584
  38. Lee D, Na J, Ryu J et al (2015) Interaction of tetraspan (in) TM4SF5 with CD44 promotes self-renewal and circulating capacities of hepatocarcinoma cells. Hepatology 61, 1978-1997 https://doi.org/10.1002/hep.27721
  39. Kim E, Um H, Park J et al (2021) TM4SF5-dependent cross-talk between hepatocytes and macrophages to reprogram the inflammatory environment. Cell Rep 37, 110018