Acknowledgement
This work was supported by Korea University Grant K2224161 (to J.L.).
References
- Xiong Y, Liu Y, Cao L et al (2020) Transcriptomic characteristics of bronchoalveolar lavage fluid and peripheral blood mononuclear cells in COVID-19 patients. Emerg Microbes Infect 9, 761-770
- Fara A, Mitrev Z, Rosalia RA et al (2020) Cytokine storm and COVID-19, a chronicle of pro-inflammatory cytokines. Open Biol 10, 200160
- Guo X, Steinkuhler J, Marin M et al (2021) Interferon-induced transmembrane protein 3 blocks fusion of diverse enveloped viruses by altering mechanical properties of cell membranes. ACS Nano 15, 8155-8170 https://doi.org/10.1021/acsnano.0c10567
- Brodin P (2021) Immune determinants of COVID-19 disease presentation and severity. Nat Med 27, 28-33 https://doi.org/10.1038/s41591-020-01202-8
- Greten FR and Grivennikov SI (2019) Inflammation and cancer, triggers, mechanisms, and consequences. Immunity 51, 27-41 https://doi.org/10.1016/j.immuni.2019.06.025
- Rajapaksa US, Jin C and Dong T (2020) Malignancy and IFITM3, friend or foe? Front Oncol 10, 2539
- Zani A and Yount JS (2018) Antiviral protection by IFITM3 in vivo. Curr Clin Microbiol Rep 5, 229-237 https://doi.org/10.1007/s40588-018-0103-0
- Liu X, Chen L, Fan Y et al (2019) IFITM3 promotes bone metastasis of prostate cancer cells by mediating activation of the TGF-β signaling pathway. Cell Death Dis 10, 1-16
- Zhang D, Wang H, He H et al (2017) Interferon induced transmembrane protein 3 regulates the growth and invasion of human lung adenocarcinoma. Thorac Cancer 8, 337
- Min J, Feng Q, Liao W et al (2018) IFITM3 promotes hepatocellular carcinoma invasion and metastasis by regulating MMP9 through p38/MAPK signaling. FEBS Open Bio 8, 1299-1311 https://doi.org/10.1002/2211-5463.12479
- Hu J, Wang S, Zhao Y et al (2014) Mechanism and biological significance of the overexpression of IFITM3 in gastric cancer. Oncol Rep 32, 2648-2656 https://doi.org/10.3892/or.2014.3522
- Yang M, Gao H, Chen P et al (2013) Knockdown of interferon-induced transmembrane protein 3 expression suppresses breast cancer cell growth and colony formation and affects the cell cycle. Oncol Rep 30, 171-178 https://doi.org/10.3892/or.2013.2428
- Li D, Peng Z, Tang H et al (2011) KLF4-mediated negative regulation of IFITM3 expression plays a critical role in colon cancer pathogenesis. Clin Cancer Res 17, 3558-3568 https://doi.org/10.1158/1078-0432.CCR-10-2729
- Lee J, Robinson ME, Ma N et al (2020) IFITM3 functions as a PIP3 scaffold to amplify PI3K signalling in B cells. Nature 588, 491-497 https://doi.org/10.1038/s41586-020-2884-6
- Muschen M (2018) Autoimmunity checkpoints as therapeutic targets in B cell malignancies. Nat Rev Cancer 18, 103-116 https://doi.org/10.1038/nrc.2017.111
- Lee AJ and Ashkar AA (2018) The dual nature of type I and type II interferons. Front Immunol 9, 2061
- Acharya D, Liu GQ and Gack MU (2020) Dysregulation of type I interferon responses in COVID-19. Nat Rev Immunol 20, 397-398
- Gill N, Deacon PM, Lichty B et al (2006) Induction of innate immunity against herpes simplex virus type 2 infection via local delivery of toll-like receptor ligands correlates with beta interferon production. J Virol 80, 9943-9950 https://doi.org/10.1128/JVI.01036-06
- Oh JE, Kim BC, Chang DH et al (2016) Dysbiosis-induced IL-33 contributes to impaired antiviral immunity in the genital mucosa. Proc Natl Acad Sci U S A 113, E762-E771
- Friedman RL, Manly SP, McMahon M et al (1984) Transcriptional and posttranscriptional regulation of interferon-induced gene expression in human cells. Cell 38, 745-755 https://doi.org/10.1016/0092-8674(84)90270-8
- Rahman K, Datta SAK, Beaven AH et al (2022) Cholesterol binds the amphipathic helix of ifitm3 and regulates antiviral activity. J Mol Biol 434, 167759
- Pierce SK (2002) Lipid rafts and B-cell activation. Nat Rev Immunol 2, 96-105
- Bailey CC, Huang IC, Kam C et al (2012) Ifitm3 limits the severity of acute influenza in mice. PLoS Pathog 8, e1002909
- Ritvo PG and Klatzmann D (2019) Interleukin-1 in the response of follicular helper and follicular regulatory T cells. Front Immunol 10, 250
- Yap JKY, Moriyama M and Iwasaki A (2020) Inflammasomes and pyroptosis as therapeutic targets for COVID-19. J Immunol 205, 307-312
- Zhang J, Wu H, Yao XH, Zhang D et al (2021) Pyroptotic macrophages stimulate the SARS-CoV-2-associated cytokine storm. Cell Mol Immunol 18, 1305-1307 https://doi.org/10.1038/s41423-021-00665-0
- Makaremi S, Asgarzadeh A, Kianfar H et al (2022) The role of IL-1 family of cytokines and receptors in pathogenesis of COVID-19. Inflamm Res 71, 923-947 https://doi.org/10.1007/s00011-022-01596-w
- Mantovani A, Allavena P, Sica A et al (2008) Cancer-related inflammation. Nature 454, 436-444 https://doi.org/10.1038/nature07205
- Litmanovich A, Khazim K and Cohen I (2018) The role of interleukin-1 in the pathogenesis of cancer and its potential as a therapeutic target in clinical practice. Oncol Ther 6, 109-127
- Dinarello CA (2010) Why not treat human cancer with interleukin-1 blockade? Cancer Metastasis Rev 29, 317-329 https://doi.org/10.1007/s10555-010-9229-0
- Qian S, Golubnitschaja O and Zhan X (2019) Chronic inflammation, key player and biomarker-set to predict and prevent cancer development and progression based on individualized patient profiles. EPMA J 10, 365-381 https://doi.org/10.1007/s13167-019-00194-x
- Shimizu T, Marusawa H, Endo Y et al (2012) Inflammation-mediated genomic instability, roles of activation-induced cytidine deaminase in carcinogenesis. Cancer Sci 103, 1201-1206 https://doi.org/10.1111/j.1349-7006.2012.02293.x
- Lewis AM, Varghese S, Xu H et al (2006) Interleukin-1 and cancer progression, The emerging role of interleukin-1 receptor antagonist as a novel therapeutic agent in cancer treatment. J Transl Med 4, 1-12 https://doi.org/10.1186/1479-5876-4-1
- Musolino C, Allegra A, Innao V et al (2017) Inflammatory and anti-inflammatory equilibrium, proliferative and anti-proliferative balance, the role of cytokines in multiple myeloma. Mediators Inflamm 2017, 1852517
- Jego G, Palucka AK, Blanck JP et al (2003) Plasmacytoid dendritic cells induce plasma cell differentiation through type i interferon and interleukin 6. Immunity 19, 225-234 https://doi.org/10.1016/S1074-7613(03)00208-5
- Ghoreschi K, Laurence A, Yang XP et al (2010) Generation of pathogenic TH17 cells in the absence of TGF-β signalling. Nature 467, 967-971 https://doi.org/10.1038/nature09447
- Kimura A and Kishimoto T (2010) IL-6, regulator of Treg/Th17 balance. Eur J Immunol 40, 1830-1835 https://doi.org/10.1002/eji.201040391
- Xu J, Lin H, Wu G et al (2021) IL-6/STAT3 Is a promising therapeutic target for hepatocellular carcinoma. Front Oncol 11, 5366
- Johnson DE, O'Keefe RA and Grandis JR (2018) Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat Rev Clin Oncol 15, 234-248 https://doi.org/10.1038/nrclinonc.2018.8
- McMichael TM, Zhang L, Chemudupati M et al (2017) The palmitoyltransferase ZDHHC20 enhances interferon-induced transmembrane protein 3 (IFITM3) palmitoylation and antiviral activity. J Biol Chem 292, 21517-21526 https://doi.org/10.1074/jbc.M117.800482
- John SP, Chin CR, Perreira JM et al (2013) The CD225 domain of IFITM3 is required for both IFITM protein association and inhibition of influenza A virus and dengue virus replication. J Virol 87, 7837-7852 https://doi.org/10.1128/JVI.00481-13
- Efremov DG, Turkalj S and Laurenti L (2020) Mechanisms of B cell receptor activation and responses to b cell receptor inhibitors in B cell malignancies. Cancers (Basel) 12, 1396
- Tuveson DA, Carter RH, Soltoff SP et al (1993) CD19 of B cells as a surrogate kinase insert region to bind phosphatidylinositol 3-Kinase. Science 260, 986-989 https://doi.org/10.1126/science.7684160
- Falasca M, Logan SK, Lehto VP et al (1998) Activation of phospholipase C gamma by PI 3-kinase-induced PH domain-mediated membrane targeting. EMBO J 17, 414
- Hendriks RW, Yuvaraj S and Kil LP (2014) Targeting Bruton's tyrosine kinase in B cell malignancies. Nat Rev Cancer 14, 219-232 https://doi.org/10.1038/nrc3702
- Scharenberg AM, Humphries LA and Rawlings DJ (2007) Calcium signalling and cell-fate choice in B cells. Nat Rev Immunol 7, 778-789
- le Huray KIP, Wang H, Sobott F et al (2022) Systematic simulation of the interactions of pleckstrin homology domains with membranes. Sci Adv 8, 6992
- Chesarino NM, Compton AA, McMichael TM et al (2017) IFITM3 requires an amphipathic helix for antiviral activity. EMBO Rep 18, 1740-1751 https://doi.org/10.15252/embr.201744100
- Amini-Bavil-Olyaee S, Choi YJ, Lee JH et al (2013) The antiviral effector IFITM3 disrupts intracellular cholesterol homeostasis to block viral entry. Cell Host Microbe 13, 452-464 https://doi.org/10.1016/j.chom.2013.03.006
- Herishanu Y, Kay S, Dezorella N et al (2013) Divergence in CD19-mediated signaling unfolds intraclonal diversity in chronic lymphocytic leukemia, which correlates with disease progression. J Immunol 190, 784-793 https://doi.org/10.4049/jimmunol.1200615
- Yang M, Gao H, Chen P et al (2013) Knockdown of interferon-induced transmembrane protein 3 expression suppresses breast cancer cell growth and colony formation and affects the cell cycle. Oncol Rep 30, 171-178 https://doi.org/10.3892/or.2013.2428
- Guerrero-Zotano A, Mayer IA and Arteaga CL (2016) PI3K/AKT/mTOR, role in breast cancer progression, drug resistance, and treatment. Cancer Metastasis Rev 35, 515-524 https://doi.org/10.1007/s10555-016-9637-x
- Zhang Z and Richmond A (2021) The role of PI3K inhibition in the treatment of breast cancer, alone or combined with immune checkpoint inhibitors. Front Mol Biosci 8, 286
- Felding-Habermann B, O'Toole TE, Smith JW et al (2001) Integrin activation controls metastasis in human breast cancer. Proc Natl Acad Sci U S A 98, 1853-1858 https://doi.org/10.1073/pnas.98.4.1853
- Papadatos-Pastos D, Rabbie R, Ross P et al (2015) The role of the PI3K pathway in colorectal cancer. Crit Rev Oncol Hematol 94, 18-30 https://doi.org/10.1016/j.critrevonc.2014.12.006
- Liang B, Li L, Miao R et al (2019) Expression of interleukin-6 and integrin αυβ6 in colon cancer, association with clinical outcomes and prognostic implications. Cancer Invest 37, 174-184
- Murillo CA, Rychahou PG and Evers BM (2004) Inhibition of α5 integrin decreases PI3K activation and cell adhesion of human colon cancers. Surgery 136, 143-149 https://doi.org/10.1016/j.surg.2004.04.006
- Terzic J, Grivennikov S, Karin E et al (2010) Inflammation and colon cancer. Gastroenterology 138, 2101-2114 https://doi.org/10.1053/j.gastro.2010.01.058
- Dammann K, Khare V and Gasche C (2014) Tracing PAKs from GI inflammation to cancer. Gut 63, 1173-1184 https://doi.org/10.1136/gutjnl-2014-306768
- Wang H, Chen H, Jiang Z et al (2019) Integrin subunit alpha V promotes growth, migration, and invasion of gastric cancer cells. Pathol Res Pract 215, 152531
- Matsuoka T, Yashiro M, Nishioka N et al (2012) PI3K/Akt signalling is required for the attachment and spreading, and growth in vivo of metastatic scirrhous gastric carcinoma. Br J Cancer 106, 1535-1542 https://doi.org/10.1038/bjc.2012.107
- Yan P, Zhu H, Yin L et al (2018) Integrin αvβ6 promotes lung cancer proliferation and metastasis through upregulation of il-8-mediated MAPK/ERK signaling. Transl Oncol 11, 619-627 https://doi.org/10.1016/j.tranon.2018.02.013
- Haake SM, Plosa EJ, Kropski JA et al (2022) Ligand-independent integrin β1 signaling supports lung adenocarcinoma development. JCI Insight 7, e154098
- Caccavari F, Valdembri D, Sandri C et al (2010) Integrin signaling and lung cancer. Cell Adh Migr 4, 124
- Zhang D, Wang H, He H et al (2017) Interferon induced transmembrane protein 3 regulates the growth and invasion of human lung adenocarcinoma. Thorac Cancer 8, 337
- Sun EJ, Wankell M, Palamuthusingam et al (2021) Targeting the PI3K/Akt/mTOR pathway in hepatocellular carcinoma. Biomedicines 9, 1639
- Xi L, Lu C, Yinghui F et al (2019) IFITM3 promotes bone metastasis of prostate cancer cells by mediating activation of the TGF-β signaling pathway. Cell Death Dis 10, 517
- Abida W, Cyrta J, Heller G et al (2019) Genomic correlates of clinical outcome in advanced prostate cancer. Proc Natl Acad Sci U S A 166, 11428-11436 https://doi.org/10.1073/pnas.1902651116
- Guerra C, Schuhmacher AJ, Canamero M et al (2007) Chronic pancreatitis is essential for induction of pancreatic ductal adenocarcinoma by K-Ras oncogenes in adult mice. Cancer Cell 11, 291-302 https://doi.org/10.1016/j.ccr.2007.01.012