DOI QR코드

DOI QR Code

Does IFITM3 link inflammation to tumorigenesis?

  • Jaewoong, Lee (School of Biosystems and Biomedical Sciences, College of Health Science, Korea University)
  • Received : 2022.10.12
  • Accepted : 2022.11.21
  • Published : 2022.12.31

Abstract

Uncontrolled chronic inflammation, in most cases due to excessive cytokine signaling through their receptors, is known to contribute to the development of tumorigenesis. Recently, it has been reported that the antiviral membrane protein interferon-induced transmembrane protein 3 (IFITM3), induced by interferon signaling as part of the inflammatory response after viral infection, contributes to the development of B-cell malignancy. The unexpected oncogenic signaling of IFITM3 upon malignant B cell activation elucidated the mechanism by which the uncontrolled expression of inflammatory proteins contributes to leukemogenesis. In this review, the potential effects of inflammatory cytokines on upregulation of IFITM3 and its contribution to tumorigenesis are discussed.

Keywords

Acknowledgement

This work was supported by Korea University Grant K2224161 (to J.L.).

References

  1. Xiong Y, Liu Y, Cao L et al (2020) Transcriptomic characteristics of bronchoalveolar lavage fluid and peripheral blood mononuclear cells in COVID-19 patients. Emerg Microbes Infect 9, 761-770
  2. Fara A, Mitrev Z, Rosalia RA et al (2020) Cytokine storm and COVID-19, a chronicle of pro-inflammatory cytokines. Open Biol 10, 200160
  3. Guo X, Steinkuhler J, Marin M et al (2021) Interferon-induced transmembrane protein 3 blocks fusion of diverse enveloped viruses by altering mechanical properties of cell membranes. ACS Nano 15, 8155-8170 https://doi.org/10.1021/acsnano.0c10567
  4. Brodin P (2021) Immune determinants of COVID-19 disease presentation and severity. Nat Med 27, 28-33 https://doi.org/10.1038/s41591-020-01202-8
  5. Greten FR and Grivennikov SI (2019) Inflammation and cancer, triggers, mechanisms, and consequences. Immunity 51, 27-41 https://doi.org/10.1016/j.immuni.2019.06.025
  6. Rajapaksa US, Jin C and Dong T (2020) Malignancy and IFITM3, friend or foe? Front Oncol 10, 2539
  7. Zani A and Yount JS (2018) Antiviral protection by IFITM3 in vivo. Curr Clin Microbiol Rep 5, 229-237 https://doi.org/10.1007/s40588-018-0103-0
  8. Liu X, Chen L, Fan Y et al (2019) IFITM3 promotes bone metastasis of prostate cancer cells by mediating activation of the TGF-β signaling pathway. Cell Death Dis 10, 1-16
  9. Zhang D, Wang H, He H et al (2017) Interferon induced transmembrane protein 3 regulates the growth and invasion of human lung adenocarcinoma. Thorac Cancer 8, 337
  10. Min J, Feng Q, Liao W et al (2018) IFITM3 promotes hepatocellular carcinoma invasion and metastasis by regulating MMP9 through p38/MAPK signaling. FEBS Open Bio 8, 1299-1311 https://doi.org/10.1002/2211-5463.12479
  11. Hu J, Wang S, Zhao Y et al (2014) Mechanism and biological significance of the overexpression of IFITM3 in gastric cancer. Oncol Rep 32, 2648-2656 https://doi.org/10.3892/or.2014.3522
  12. Yang M, Gao H, Chen P et al (2013) Knockdown of interferon-induced transmembrane protein 3 expression suppresses breast cancer cell growth and colony formation and affects the cell cycle. Oncol Rep 30, 171-178 https://doi.org/10.3892/or.2013.2428
  13. Li D, Peng Z, Tang H et al (2011) KLF4-mediated negative regulation of IFITM3 expression plays a critical role in colon cancer pathogenesis. Clin Cancer Res 17, 3558-3568 https://doi.org/10.1158/1078-0432.CCR-10-2729
  14. Lee J, Robinson ME, Ma N et al (2020) IFITM3 functions as a PIP3 scaffold to amplify PI3K signalling in B cells. Nature 588, 491-497 https://doi.org/10.1038/s41586-020-2884-6
  15. Muschen M (2018) Autoimmunity checkpoints as therapeutic targets in B cell malignancies. Nat Rev Cancer 18, 103-116 https://doi.org/10.1038/nrc.2017.111
  16. Lee AJ and Ashkar AA (2018) The dual nature of type I and type II interferons. Front Immunol 9, 2061
  17. Acharya D, Liu GQ and Gack MU (2020) Dysregulation of type I interferon responses in COVID-19. Nat Rev Immunol 20, 397-398
  18. Gill N, Deacon PM, Lichty B et al (2006) Induction of innate immunity against herpes simplex virus type 2 infection via local delivery of toll-like receptor ligands correlates with beta interferon production. J Virol 80, 9943-9950 https://doi.org/10.1128/JVI.01036-06
  19. Oh JE, Kim BC, Chang DH et al (2016) Dysbiosis-induced IL-33 contributes to impaired antiviral immunity in the genital mucosa. Proc Natl Acad Sci U S A 113, E762-E771
  20. Friedman RL, Manly SP, McMahon M et al (1984) Transcriptional and posttranscriptional regulation of interferon-induced gene expression in human cells. Cell 38, 745-755 https://doi.org/10.1016/0092-8674(84)90270-8
  21. Rahman K, Datta SAK, Beaven AH et al (2022) Cholesterol binds the amphipathic helix of ifitm3 and regulates antiviral activity. J Mol Biol 434, 167759
  22. Pierce SK (2002) Lipid rafts and B-cell activation. Nat Rev Immunol 2, 96-105
  23. Bailey CC, Huang IC, Kam C et al (2012) Ifitm3 limits the severity of acute influenza in mice. PLoS Pathog 8, e1002909
  24. Ritvo PG and Klatzmann D (2019) Interleukin-1 in the response of follicular helper and follicular regulatory T cells. Front Immunol 10, 250
  25. Yap JKY, Moriyama M and Iwasaki A (2020) Inflammasomes and pyroptosis as therapeutic targets for COVID-19. J Immunol 205, 307-312
  26. Zhang J, Wu H, Yao XH, Zhang D et al (2021) Pyroptotic macrophages stimulate the SARS-CoV-2-associated cytokine storm. Cell Mol Immunol 18, 1305-1307 https://doi.org/10.1038/s41423-021-00665-0
  27. Makaremi S, Asgarzadeh A, Kianfar H et al (2022) The role of IL-1 family of cytokines and receptors in pathogenesis of COVID-19. Inflamm Res 71, 923-947 https://doi.org/10.1007/s00011-022-01596-w
  28. Mantovani A, Allavena P, Sica A et al (2008) Cancer-related inflammation. Nature 454, 436-444 https://doi.org/10.1038/nature07205
  29. Litmanovich A, Khazim K and Cohen I (2018) The role of interleukin-1 in the pathogenesis of cancer and its potential as a therapeutic target in clinical practice. Oncol Ther 6, 109-127
  30. Dinarello CA (2010) Why not treat human cancer with interleukin-1 blockade? Cancer Metastasis Rev 29, 317-329 https://doi.org/10.1007/s10555-010-9229-0
  31. Qian S, Golubnitschaja O and Zhan X (2019) Chronic inflammation, key player and biomarker-set to predict and prevent cancer development and progression based on individualized patient profiles. EPMA J 10, 365-381 https://doi.org/10.1007/s13167-019-00194-x
  32. Shimizu T, Marusawa H, Endo Y et al (2012) Inflammation-mediated genomic instability, roles of activation-induced cytidine deaminase in carcinogenesis. Cancer Sci 103, 1201-1206 https://doi.org/10.1111/j.1349-7006.2012.02293.x
  33. Lewis AM, Varghese S, Xu H et al (2006) Interleukin-1 and cancer progression, The emerging role of interleukin-1 receptor antagonist as a novel therapeutic agent in cancer treatment. J Transl Med 4, 1-12 https://doi.org/10.1186/1479-5876-4-1
  34. Musolino C, Allegra A, Innao V et al (2017) Inflammatory and anti-inflammatory equilibrium, proliferative and anti-proliferative balance, the role of cytokines in multiple myeloma. Mediators Inflamm 2017, 1852517
  35. Jego G, Palucka AK, Blanck JP et al (2003) Plasmacytoid dendritic cells induce plasma cell differentiation through type i interferon and interleukin 6. Immunity 19, 225-234 https://doi.org/10.1016/S1074-7613(03)00208-5
  36. Ghoreschi K, Laurence A, Yang XP et al (2010) Generation of pathogenic TH17 cells in the absence of TGF-β signalling. Nature 467, 967-971 https://doi.org/10.1038/nature09447
  37. Kimura A and Kishimoto T (2010) IL-6, regulator of Treg/Th17 balance. Eur J Immunol 40, 1830-1835 https://doi.org/10.1002/eji.201040391
  38. Xu J, Lin H, Wu G et al (2021) IL-6/STAT3 Is a promising therapeutic target for hepatocellular carcinoma. Front Oncol 11, 5366
  39. Johnson DE, O'Keefe RA and Grandis JR (2018) Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat Rev Clin Oncol 15, 234-248 https://doi.org/10.1038/nrclinonc.2018.8
  40. McMichael TM, Zhang L, Chemudupati M et al (2017) The palmitoyltransferase ZDHHC20 enhances interferon-induced transmembrane protein 3 (IFITM3) palmitoylation and antiviral activity. J Biol Chem 292, 21517-21526 https://doi.org/10.1074/jbc.M117.800482
  41. John SP, Chin CR, Perreira JM et al (2013) The CD225 domain of IFITM3 is required for both IFITM protein association and inhibition of influenza A virus and dengue virus replication. J Virol 87, 7837-7852 https://doi.org/10.1128/JVI.00481-13
  42. Efremov DG, Turkalj S and Laurenti L (2020) Mechanisms of B cell receptor activation and responses to b cell receptor inhibitors in B cell malignancies. Cancers (Basel) 12, 1396
  43. Tuveson DA, Carter RH, Soltoff SP et al (1993) CD19 of B cells as a surrogate kinase insert region to bind phosphatidylinositol 3-Kinase. Science 260, 986-989 https://doi.org/10.1126/science.7684160
  44. Falasca M, Logan SK, Lehto VP et al (1998) Activation of phospholipase C gamma by PI 3-kinase-induced PH domain-mediated membrane targeting. EMBO J 17, 414
  45. Hendriks RW, Yuvaraj S and Kil LP (2014) Targeting Bruton's tyrosine kinase in B cell malignancies. Nat Rev Cancer 14, 219-232 https://doi.org/10.1038/nrc3702
  46. Scharenberg AM, Humphries LA and Rawlings DJ (2007) Calcium signalling and cell-fate choice in B cells. Nat Rev Immunol 7, 778-789
  47. le Huray KIP, Wang H, Sobott F et al (2022) Systematic simulation of the interactions of pleckstrin homology domains with membranes. Sci Adv 8, 6992
  48. Chesarino NM, Compton AA, McMichael TM et al (2017) IFITM3 requires an amphipathic helix for antiviral activity. EMBO Rep 18, 1740-1751 https://doi.org/10.15252/embr.201744100
  49. Amini-Bavil-Olyaee S, Choi YJ, Lee JH et al (2013) The antiviral effector IFITM3 disrupts intracellular cholesterol homeostasis to block viral entry. Cell Host Microbe 13, 452-464 https://doi.org/10.1016/j.chom.2013.03.006
  50. Herishanu Y, Kay S, Dezorella N et al (2013) Divergence in CD19-mediated signaling unfolds intraclonal diversity in chronic lymphocytic leukemia, which correlates with disease progression. J Immunol 190, 784-793 https://doi.org/10.4049/jimmunol.1200615
  51. Yang M, Gao H, Chen P et al (2013) Knockdown of interferon-induced transmembrane protein 3 expression suppresses breast cancer cell growth and colony formation and affects the cell cycle. Oncol Rep 30, 171-178 https://doi.org/10.3892/or.2013.2428
  52. Guerrero-Zotano A, Mayer IA and Arteaga CL (2016) PI3K/AKT/mTOR, role in breast cancer progression, drug resistance, and treatment. Cancer Metastasis Rev 35, 515-524 https://doi.org/10.1007/s10555-016-9637-x
  53. Zhang Z and Richmond A (2021) The role of PI3K inhibition in the treatment of breast cancer, alone or combined with immune checkpoint inhibitors. Front Mol Biosci 8, 286
  54. Felding-Habermann B, O'Toole TE, Smith JW et al (2001) Integrin activation controls metastasis in human breast cancer. Proc Natl Acad Sci U S A 98, 1853-1858 https://doi.org/10.1073/pnas.98.4.1853
  55. Papadatos-Pastos D, Rabbie R, Ross P et al (2015) The role of the PI3K pathway in colorectal cancer. Crit Rev Oncol Hematol 94, 18-30 https://doi.org/10.1016/j.critrevonc.2014.12.006
  56. Liang B, Li L, Miao R et al (2019) Expression of interleukin-6 and integrin αυβ6 in colon cancer, association with clinical outcomes and prognostic implications. Cancer Invest 37, 174-184
  57. Murillo CA, Rychahou PG and Evers BM (2004) Inhibition of α5 integrin decreases PI3K activation and cell adhesion of human colon cancers. Surgery 136, 143-149 https://doi.org/10.1016/j.surg.2004.04.006
  58. Terzic J, Grivennikov S, Karin E et al (2010) Inflammation and colon cancer. Gastroenterology 138, 2101-2114 https://doi.org/10.1053/j.gastro.2010.01.058
  59. Dammann K, Khare V and Gasche C (2014) Tracing PAKs from GI inflammation to cancer. Gut 63, 1173-1184 https://doi.org/10.1136/gutjnl-2014-306768
  60. Wang H, Chen H, Jiang Z et al (2019) Integrin subunit alpha V promotes growth, migration, and invasion of gastric cancer cells. Pathol Res Pract 215, 152531
  61. Matsuoka T, Yashiro M, Nishioka N et al (2012) PI3K/Akt signalling is required for the attachment and spreading, and growth in vivo of metastatic scirrhous gastric carcinoma. Br J Cancer 106, 1535-1542 https://doi.org/10.1038/bjc.2012.107
  62. Yan P, Zhu H, Yin L et al (2018) Integrin αvβ6 promotes lung cancer proliferation and metastasis through upregulation of il-8-mediated MAPK/ERK signaling. Transl Oncol 11, 619-627 https://doi.org/10.1016/j.tranon.2018.02.013
  63. Haake SM, Plosa EJ, Kropski JA et al (2022) Ligand-independent integrin β1 signaling supports lung adenocarcinoma development. JCI Insight 7, e154098
  64. Caccavari F, Valdembri D, Sandri C et al (2010) Integrin signaling and lung cancer. Cell Adh Migr 4, 124
  65. Zhang D, Wang H, He H et al (2017) Interferon induced transmembrane protein 3 regulates the growth and invasion of human lung adenocarcinoma. Thorac Cancer 8, 337
  66. Sun EJ, Wankell M, Palamuthusingam et al (2021) Targeting the PI3K/Akt/mTOR pathway in hepatocellular carcinoma. Biomedicines 9, 1639
  67. Xi L, Lu C, Yinghui F et al (2019) IFITM3 promotes bone metastasis of prostate cancer cells by mediating activation of the TGF-β signaling pathway. Cell Death Dis 10, 517
  68. Abida W, Cyrta J, Heller G et al (2019) Genomic correlates of clinical outcome in advanced prostate cancer. Proc Natl Acad Sci U S A 166, 11428-11436 https://doi.org/10.1073/pnas.1902651116
  69. Guerra C, Schuhmacher AJ, Canamero M et al (2007) Chronic pancreatitis is essential for induction of pancreatic ductal adenocarcinoma by K-Ras oncogenes in adult mice. Cancer Cell 11, 291-302 https://doi.org/10.1016/j.ccr.2007.01.012