DOI QR코드

DOI QR Code

함평만 갯벌의 모래 퇴적물로 인한 염습지 식물의 공간적 변이

Spatial Variations of Salt Marsh Plants Induced by Sandy Sediment in Hampyeong Tidal Flat

  • 홍민기 (국립생태원 기후생태관측팀 ) ;
  • 이재연 (국립생태원 기후생태관측팀 ) ;
  • 박정수 (국립생태원 기후생태관측팀 ) ;
  • 이효혜미 (국립생태원 기후생태관측팀 )
  • Minki, Hong (Ecological Observation Team on Climate Change, National Institute of Ecology) ;
  • Jaeyeon, Lee (Ecological Observation Team on Climate Change, National Institute of Ecology) ;
  • Jeong-Soo, Park (Ecological Observation Team on Climate Change, National Institute of Ecology) ;
  • Hyohyemi, Lee (Ecological Observation Team on Climate Change, National Institute of Ecology)
  • 투고 : 2022.12.05
  • 심사 : 2022.12.14
  • 발행 : 2022.12.31

초록

함평만은 좁은 만 입구와 복잡한 지형 구조로 인하여 비대칭적인 퇴적물 이동이 일어나기 때문에, 갯벌의 저질에는 모래 함량이 증가하는 것으로 연구되었다. 모래화 갯벌은 염습지 식생 분포를 변화시키는 것으로 현존식생도와 식생단면도 조사를 통해 분석되었다. 2016년과 2022년의 식생면적 비교에서 절대염생식물인 해홍나물군락은 74% 감소하였다. 반면 임의염생식물인 갯잔디군락은 75% 증가하였다. 특히 갯잔디는 지하경과 줄기의 밀도가 높게 발달하여, 군락 내 모래와 같은 퇴적물을 가둬서 견고한 사구환경을 조성하는 것으로 보인다. 함평만 갯벌의 효과적인 자연보전 관리 계획 수립을 위하여, 갯벌 토성 변화와 식생 군집의 상호작용이 향후 갯벌생태계에 미치는 영향에 대해 통합적 접근이 필요하다.

Hampyeong Bay has a narrow seawater channel and a complex topographical structure. The sand content of the tidal flat soil is increasing due to asymmetrical sedimentation. Through the investigation of the vegetation distribution and the use of the line-transect method, sand flats were observed to gradually change the vegetation distribution of salt marshes. Comparing the vegetation area between 2016 and 2022, the obligate halophyte Suaeda maritima decreased by 74% and Zoysia sinica increased by 75%. Z. sinica seems to support the robustness of the dune environment by trapping sediments such as sand in the colony, because the underground rhizomes and stems are highly developed. To establish an effective conservation management plan for tidal flats, an integrated study should be conducted to assess the impact of changes in tidal flat soil and the interaction of vegetation communities in Hampyeong Bay.

키워드

과제정보

본 연구는 국립생태원 "2022 국가 장기생태연구(NIE-고유연구(B)-2022-02)" 의 연구비 지원에 의해 수행되었습니다.

참고문헌

  1. Anderson, S.M., Ury, E.A., Taillie, P.J., Ungberg, E.A., Moorman, C.E., Poulter, B., Ardon, M., Bernhardt, E. S., and Wright, J.P. 2022. Salinity thresholds for understory plants in coastal wetlands. Plant Ecology 223(3): 323-337. https://doi.org/10.1007/s11258-021-01209-2
  2. Bang, J.H. 2018. Effects of elevation and herbivores on the distribution of halophytes in a Korean salt marsh Doctoral dissertation, Seoul National University.
  3. Bang, J.H., Joo, S., Lee, E.J., Jeong, S., and Park, S. 2020. Diet of the Mud-Flat Crab Helice tientsinensis in a Korean Salt Marsh. Wetlands 40: 311-319. https://doi.org/10.1007/s13157-019-01193-4
  4. Bernhardt, J.R. and Leslie, H.M. 2013. Resilience to climate change in coastal marine ecosystems. Annual Review of Marine Science 5(1): 371-392. https://doi.org/10.1146/annurev-marine-121211-172411
  5. Bray, J.R. and Curtis, J.T. 1957. An ordination of the upland forest communities of southern Wisconsin. Ecological Monographs 27(4): 326-349.
  6. Choi, Y.S., Joo, S., Kim, M.S., Han, D., and Jeong, G. 2017. Habitat Use and Food Materials of the Endangered Swan Goose (Anser cygnoides) during the Wintering Season. Korean Journal of Ecology and Environment 50(2): 266-274. (In Korean) https://doi.org/10.11614/KSL.2017.50.2.266
  7. Curtis, J.T. and McIntosh, R.P. 1951. An upland forest continuum in the prairie-forest border region of Wisconsin. Ecology 32(3): 476-496. https://doi.org/10.2307/1931725
  8. Etterson, J.R. and Mazer, S.J. 2016. How climate change affects plants' sex lives. Science 353(6294): 32-33. https://doi.org/10.1126/science.aag1624
  9. Fan, D., Wang, Y., and Liu, M. 2013. Classifications, sedimentary features and facies associations of tidal flats. Journal of Palaeogeography 2(1): 66-80. https://doi.org/10.3724/SP.J.1261.2013.00018
  10. Ganthy, F., Sottolichio, A., and Verney, R. 2013. Seasonal modification of tidal flat sediment dynamics by seagrass meadows of Zostera noltii (Bassin d'Arcachon, France). Journal of Marine Systems 109: S233-S240. https://doi.org/10.1016/j.jmarsys.2011.11.027
  11. Gedan, K.B., Silliman, B.R., and Bertness, M.D. 2009. Centuries of Human-Driven Change in Salt Marsh Ecosystems. The Annual Review of Marine Science 1: 117-141. https://doi.org/10.1146/annurev.marine.010908.163930
  12. Jeong, Y.W. 2021. 'Korea's tidal flats' listed as UNESCO World Natural Heritage. KBS news. https://news.kbs.co.kr/news/view.do?ncd=5242400&ref=A. Accessed 13 December 2022. (In Korean)
  13. Kassambara, A. and Mundt, F. 2020. factoextra: Extract and Visualize the Results of Multivariate Data Analyses. R package version 1.0.7, https://CRAN.R-project.org/package=factoextra. Accessed 12 December 2022.
  14. Kil, H.J. and Lee, J.S. 2011. Unrecorded Pulmonate Snail, Onchidium hongkongensis (Systellommatophora, Onchidiidae) from Korean Waters. The Korean Journal of Malacology 27(3): 191-192. https://doi.org/10.9710/kjm.2011.27.3.191
  15. Kim, Y.K. 2022. Established the National Tidal Flat World Natural Heritage Conservation Headquarters in Shinan-gun. KUKMINILBO. https://news.kmib.co.kr/article/view.asp?arcid=0017615111&code=61121111&cp=nv. Accessed 13 December 2022. (In Korean)
  16. Korea National Climate Data Center. 2022. Open MET Data Portal. https://data.kma.go.kr/. Accessed 2 December 2022.
  17. Kroetsch, D. and Wang, C. 2008. Particle size distribution. Soil Sampling and Methods of Analysis 2: 713-725.
  18. Kwon, K.K. and Je, J-G. 2002. Preliminary Studies on the Relationship between Reed and Bacterial Communities in the Salt Marsh Environment of Namyang Bay, Korea. Ocean and Polar Research 24(1): 47-53. https://doi.org/10.4217/OPR.2002.24.1.047
  19. Lee, C. 2003. Color Korean Plant Encyclopedia (I, II). Hyangmunsa. Seoul, Korea. (In Korean)
  20. Lee, D.I., Tac, D.H., and Kim, G.Y. 2016. Diagnosis of conflict problem between the marine environmental conservation and development, and policy implication for marine spatial planning. Journal of the Korean Society for Marine Environment & Energy 19(3): 227-235. (In Korean) https://doi.org/10.7846/JKOSMEE.2016.19.3.227
  21. Lee, H.Y. 2013. Diversity and biomass of benthic diatoms in Hampyeong Bay tidal flats. Korean Journal of Environmental Biology 31(4): 295-301. (In Korean) https://doi.org/10.11626/KJEB.2013.31.4.295
  22. Lee, H.Y. and Jung, M.H. 2011. Distribution of benthic diatoms in tidal flats of Hampyeong Bay, Korea. Korean Journal of Environmental Biology 29(1): 17-22. (In Korean)
  23. Lee, K.S. and Jun, S.K. 2009. Characteristics of hydrography and tidal current in Hampyung Bay, the western coast of Korea. Journal of the Korean Earth Science Society 30(2): 247-256. (In Korean) https://doi.org/10.5467/JKESS.2009.30.2.247
  24. Lee, S.H., Lee, J.S., Kim, J.W., Kim, H.S., and Ihm, H.B. 1998. Studies on the vegetation distribution and biomass at the wetland of Hampyung-Man. Bull Ins Litt Environ Mokpo Natl Univ, 15: 9-20. (In Korean)
  25. Ministry of Environment. 2020. Korean climate change assessment report 2020 - Adaptation and impacts of climate change. ISBN 978-89-93652-58-1. (In Korean)
  26. National Institute of Biological Resources. 2022. National list of species of Korea. Incheon, Korea. (In Korean)
  27. National Institute of Crop Science. 2014. Food Crop Environment Analysis Method Handbook. National Institute of Crop Science. Incheon, Korea. (In Korean)
  28. National institute of Ecology. 2016. Basic ecological Research for Climate Change Risk Assessment. National institute of Ecology. Seocheon, Korea. pp. 234-256. (In Korean)
  29. National institute of Ecology. 2021. Monitoring ecosystem response to climate change. National institute of Ecology. Seocheon, Korea. pp. 124-146. (In Korean)
  30. Park, H.S., Kwon, B.H., Kim, I.K., So, Y.H., Oh, S.B. and Kang, D.H. 2017. Analysis of Variations in Soil Heat Flux and Air Temperature by Net Radiation at a Mud Flat in Hampyeong Bay. Journal of Environmental Science International 26(9): 1101-1110. (In Korean)
  31. Park, J.S., Lee, H., and Lee. J.S. 2022. Hampyeong Bay Salt Plants and Changes in Soil Environment. Ecology and Resilient Infrastructure abstract book. Seoul, Korea. pp. 9. (In Korean)
  32. QGIS.org. 2022. QGIS Geographic Information System. QGIS Association, http://www.qgis.org. Accessed 20 June 2022.
  33. R Core Team. 2022. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
  34. Richards, C.L., Pennings, S.C., Donovan, L.A. 2005. Habitat range and phenotypic variation in salt marsh plants. Plant Ecology 176, 263-273. https://doi.org/10.1007/s11258-004-0841-3
  35. Shamsutdinov, N.Z., Shamsutdinova, E.Z., Orlovsky, N.S., and Shamsutdinov, Z.Sh. 2017. Halophytes: Ecological Features, Global Resources, and Outlook for Multipurpose Use. Herald of the Russian Academy of Sciences 87(1), 1-11. https://doi.org/10.1134/S1019331616060083
  36. Shin, W., Kim, J.H., and Lee, E.J. 2020. Effect of native Suaeda japonica structure on the initial seed settlement of an invasive plant Spartina anglica, Aquatic Botany 161: 103175.
  37. So, Y.H., Kang, D.H., Kwon, B.H. and Kim, P.S. 2019. Seasonal variations of CO2 concentration and flux in vegetation and non-vegetation environments on the Muan tidal flat of Hampyong Bay. Journal of Wetlands Research, 21(4): 257-266. (In Korean)
  38. Yoo, J.W., Kim, C.S., Park, M.R., Jeong, S.Y., Lee, C.L., Kim, S., Ahn, D.S., Lee, C.G., Han, D., Back, Y. and Park, Y.C. 2021. Considerations and Alternative Approaches to the Estimation of Local Abundance of Legally Protected Species, the Fiddler Crab, Austruca lactea. Journal of Wetlands Research 23, 122-132. (In Korean) https://doi.org/10.17663/JWR.2021.23.2.122
  39. Yook, K. 2015. Application of Linear Programming to the Designation of Marine Protected Areas Considering Biodiversity and Fishery Rights. Doctoral dissertation, Seoul National University. (In Korean)